
An Image-space Approach to Interactive Point

Cloud Rendering Including Shadows and

Transparency

Petar Dobrev1 Paul Rosenthal1,2 Lars Linsen1

1 Jacobs University, Bremen, Germany
{p.dobrev, l.linsen}@jacobs-university.de

2 Chemnitz University of Technology, Germany
paul.rosenthal@informatik.tu-chemnitz.de

Abstract

Point-based rendering methods have proven to be effective for the
display of large point cloud surface models, basically replacing global
surface reconstruction with local surface estimations, for example, via
splats or implicit functions. Crucial to their performance in terms of
rendering quality and speed is the representation of the local surface
patches. We present an approach that avoids any object-space oper-
ations and computes high-quality renderings by only applying image-
space operations. The image-space operations apply a pipeline of fil-
ters to a point cloud after being projected to image space. Those
filtering operations appropriately fill background pixels and occluded
pixels and produce visually pleasing results using smoothing and anti-
aliasing. For a realistic visualization of the models, transparency and
shadows are essential features. We propose a method for point cloud
rendering with transparency and shadows at interactive rates. Again,
all passes are executed in image space and no pre-computation steps
are required. The underlying technique for our approach is a depth
peeling method for point cloud surface representations. Having de-
tected a sorted sequence of surface layers, they can be blended front to
back with given opacity values to obtain renderings with transparency.
These computation steps achieve interactive frame rates. For render-
ings with shadows, we determine a point cloud shadow texture that
stores for each point of a point cloud whether it is lit by a given light
source. The extraction of the layer of lit points is obtained using the
depth peeling technique, again. For the shadow texture computation,
we also apply a Monte-Carlo integration method to approximate light
from an area light source, leading to soft shadows. Shadow compu-
tations for point light sources are executed at interactive frame rates.
Shadow computations for area light sources are performed at interac-
tive or near-interactive frame rates depending on the approximation

1

quality.
Keywords: Point-based rendering, shadows, transparency.

1 Introduction

Ever since the emergence of 3D scanning devices, surface representation and
rendering of scanned objects has been an active area of research. Acquiring
consistent renderings of the surfaces is not trivial as the output of the scan-
ning processes are point clouds with no information about the connectivity
between the points. Several techniques have been developed to remedy this
problem, ranging from global and local surface reconstruction to methods
entirely operating in image space. Traditional approaches involve the gen-
eration of a triangular mesh from the point cloud, e.g. [5],which represents
a (typically closed) manifold, and the subsequent application of standard
mesh rendering techniques for display. Such global surface reconstruction
approaches, however, scale superlinearly in the number of points and are
slow when applied to the large datasets that can be obtained by modern
scanning devices.

This observation led to the idea of using local surface reconstruction
methods instead. Local surface reconstruction methods compute for each
point a subset of neighboring points and extend the point to a local sur-
face representation based on plane or surface fitting to its neighborhood [3].
The point cloud rendering is, then, obtained by displaying the (blended)
extensions. The local surface reconstruction itself is linear in the number of
points, but it relies on a fast and appropriate computation of a neighbor-
hood for each point in a pre-computation step. The speed and quality of
the approach depends heavily on the choice of the neighborhood.

As the number of points increases, the surface elements tend to shrink
and when projected to the image plane have nearly pixel size. This ob-
servation was already made by Grossman and Dally [8], who presented an
approach just using points as rendering primitives and some image-space
considerations to obtain surface renderings without holes. Recently, this
image-space technique has been re-considered and improved [14, 20, 24].
This method has the advantage that no surface reconstruction is required
and that all image-space operations can efficiently be implemented on the
GPU, utilizing its speed and parallelism. It only assumes points (and a sur-
face normal for appropriate illumination). Our approach builds upon the
ideas of Rosenthal and Linsen [20]. The image-space operations for trans-
forming a projected point cloud to a surface rendering include image filters
to fill holes in the projected surface, which originate from pixels that exhibit
background information or occluded/hidden surface parts, and smoothing
filters. The contribution of this paper is to provide transparency and shadow
capabilities for such point cloud renderings at high frame rates using a depth

2

peeling technique. The idea of this image-space approach is described in Sec-
tion 3.

Depth peeling is a multi-pass technique used to extract (or “peel”) layers
of surfaces with respect to a given viewpoint from a scene with multiple
surface layers. While standard depth testing in image space provides the
nearest fragments of the scene (i.e., the closest layer), depth peeling with n
passes extracts n such layers. In each rendering pass, the depth information
of the fragments of the current layer is recorded and used to determine the
next layer. In the context of point clouds, each layer consists of one or
multiple surface parts in point cloud representation. Each layer is a subset
of the entire point cloud, which can be displayed using an image-space point
cloud rendering technique. Extracting all the layers in a scene leads to a
partition of the point cloud. We describe our depth peeling approach for
point cloud surface representations in Section 4.

The information extracted by the depth peeling approach can be put to
different applications. We exploit this information for enhancing the capabil-
ities of interactive point cloud renderings with transparency and (soft) shad-
ows. To achieve the first goal, we developed a method for order-independent
transparency computation described in Section 5. Once the depth peeling
approach has acquired the surface layers, they are blended with object-
specific opacity values in the order of their acquisition. This approach allows
for rendering of multiple surfaces in one scene using different opacity values
for each. One application is the transparent rendering of complex scanned
surfaces with multiple layers. Another application is the rendering of mul-
tiple, possibly nested isosurfaces (in point cloud representation) extracted
from volumetric data fields in the context of scientific visualization.

Our second goal was the shadow computation in scenes with point cloud
surface representations and the interactive rendering of such scenes. To
determine lit and unlit regions of the scene, one has to determine, which
points are visible from the light source and which are not. This can be done
by rendering the scene with the viewpoint being the position of the light
source. In this setting, all those points that are visible can be marked as lit.
This approach assumes that we apply the image-space rendering approach
with the filters that remove occluded surface parts. The result can be stored
in form of a point cloud shadow texture. However, since the scene is typically
composed of a large number of points, it is more than likely that multiple
visible points project to the same pixel, such that marking only one of those
points as lit would result in an inconsistent shadow texture. To extract and
mark multiple lit points that project to the same pixel, we apply the depth
peeling technique, again. Once all lit points have been marked, the scene
is rendered from the viewpoint of the observer, where the unlit points are
rendered without diffuse or specular lighting, i.e., only using ambient light.
To create soft shadows and alleviate aliasing artifacts, we use a Monte-Carlo
integration method to approximate light intensity from an area light source.

3

Details are given in Section 6.
The GPU implementation of the algorithms allows us to achieve inter-

active rates for layer extraction, transparent renderings, and renderings of
scenes with (soft) shadows. Results of all steps are presented in Section 7.

2 Related Work

Research in the field of point cloud rendering has gained momentum espe-
cially after the Michelangelo project [10] when models with huge amount
of points became available for use. Applying traditional global surface re-
construction approaches on the huge datasets was no longer feasible, which
led to the development of a range of local surface reconstruction methods
[29, 2, 12, 16, 22, 9, 11]. They operate on the point clouds by extending
the points with some implicit or explicit surface elements. The local surface
reconstruction itself is linear in the number of points, but it relies on a fast
and appropriate computation of a neighborhood for each point in a pre-
computation step. The speed and quality of the approach depends heavily
on the choice of the neighborhood.

As the number of points increases, the surface elements tend to shrink
and when projected to the image plane have nearly pixel size. This ob-
servation was already made by Grossman and Dally [8], who presented an
approach just using points as rendering primitives and some image-space
considerations to obtain surface renderings without holes. Recently, this
image-space technique has been re-considered and improved [14, 20, 24].
These approaches have an advantageous time complexity and obviously even
more so when dealing with very large point cloud models. Our approach
follows the ideas of Rosenthal and Linsen [20] avoiding any geometric obser-
vations in object space. The authors propose using filters on the rendered
image of the lit point cloud and the respective depth buffer to appropri-
ately fill pixels. In particular, pixels that incorrectly exhibit background
information or occluded surface parts are corrected. The subsequent appli-
cation of smoothing filters leads to a smooth surface rendering. Moreover,
anti-aliasing and illustrative rendering techniques are supported. However,
none of these approaches support the rendering of transparent surfaces or
the rendering of scenes with shadows.

An effective way to incorporate transparency and/or shadows to point-
based rendering is the use of ray tracing methods as introduced by Schaufler
and Jensen [23]. Their ray-tracing technique for point clouds is based on
sending out rays with a certain width which can geometrically be described
as cylinders. Wand and Straßer [26] introduce a similar concept by replacing
the cylinders with cones. Adamson and Alexa [1] proposed a method for
ray tracing point set surfaces, while Linsen et al. [13] used ray tracing in
combination with splatting. However, such approaches are typically far

4

from achieving interactive frame rates. The only interactive ray tracing
algorithm of point-based models was introduced by Wald and Seidel [25],
but they restricted themselves to scenes with shadows, i.e., transparency is
not supported. The original EWA splatting paper [29] presents a method
for transparency utilizing a software multi-layered framebuffer with fixed
number of layers per pixel. Several follow-up papers [18, 4] discuss how
GPUs can be used to speed up the EWA splatting computation. Zhang
and Pajarola [28] introduced the deferred blending approach, which requires
only one geometry pass for both visibility culling and blending. It does so
by rendering groups of non-overlapping splats to different images and then
operating only in the image domain. They also propose an extension how
to use this approach to achieve order-independent transparency with one
geometry pass.

Another approach to incorporate shadows into interactive point-based
rendering can be obtained in a straight-forward manner when first recon-
structing the surface from the point cloud (globally or locally) and sub-
sequently applying standard shadow mapping techniques [6]. Botsch et
al. [4] applied shadow maps to EWA splatting using GPU implementation
to achieve interactive rates. The idea of shadow mapping goes back to the
approach of Williams [27].

The shadow computation in our approach is similar to irradiance textures
(also known as “pre-baked” lighting) in mesh-based rendering [17, 15]. Lit
surfaces are determined and stored in a texture by rendering the scene with
the view-point being the position of the light source. In the rendering pass
this information is used to determine which surfaces should be drawn in
shadow, and which not.

3 Image-space Rendering Using Filters

The goal of the image-space point cloud rendering approach is to efficiently
produce high-quality renderings of objects and scenes, whose surfaces are
given in point cloud representation. More precisely, a two-dimensional ori-
ented manifold Γ is given by a finite set Γ̃ of points on the manifold. In
addition to their position, the points on the surface should also have surface
normals associated with them, i. e.

Γ̃ :=
{

(xi,ni) ∈ Γ × TxiΓ
⊥ : ‖ni‖ = 1

}
,

where TxiΓ
⊥ denotes the orthogonal complement to the tangent plane TxiΓ

to the manifold Γ in the point xi.

5

3.1 Point Rendering

Image-space point cloud rendering uses a rendering pipeline for such point
clouds Γ̃ that does not require additional object-space computations such
as local (or even global) geometry or topology estimations of the manifold
Γ. Instead, all processing steps are performed in image (or screen) space.
Consequently, the first processing step in our pipeline is to project point
cloud Γ̃ into image space, including not only the points but also generating
a normal map.

Before projecting the points, they are lit using the local Phong illumi-
nation model with ambient, diffuse, and specular lighting. The illuminated
points and associated normals are projected onto the screen using perspec-
tive projection.

During projection we apply backface culling and depth buffering. The
backface culling is performed by discarding back-facing points (xi,ni), with
respect to the surface normal ni. The depth test is performed by turning
on the OpenGL depth buffering. Consequently, if two points are projected
to the same pixel, the one closer to the viewer is considered. The colors
as well as the normals of the projected points are stored in RGBA color
textures using the RGB channels only. Figure 1 shows the result of our first
processing steps. The data set used is the well-known skeleton hand data
set consisting of 327k points.1 The illuminated points after projection in
conjunction with backface culling and depth buffering are displayed.

Figure 1: Rendering of the illuminated surface points of the skeleton hand
data set containing 327k surface points.

Besides color and position in image space, the depth of each projected
1(Data set courtesy of Stereolithography Archive, Clemson University.

6

point, i. e. the distance of the represented point xi to the viewer’s position xv,
is required for our subsequent processing steps. The depth value calculated
during the depth test is not linear in the distance d of the point to the
viewer, as it is given by

f(d) :=
(d − znear) zfar

(zfar − znear) d
,

where znear and zfar denote the viewer’s distances to the near and far planes.
Since this depth information is not suitable for our needs, we replace it by
computing the depth values for each projected point by

f(d) :=
d

zfar
,

and storing this value at the respective position in the alpha channel of the
RGBA textures.

3.2 Filling Background Pixels

If the sampling rate of surface Γ is high enough such that the projected
distances of adjacent points of point cloud Γ̃ are all smaller or equal to the
pixel size, then the projected illuminated points that pass backface culling
and depth test produce the desired result of a smoothly shaded surface
rendering. Obviously, this condition is not met, in general. Especially, when
zooming closer to the object, the neighboring points of the point cloud will
eventually no longer be projected to adjacent pixels. As a consequence, the
resulting surface rendering exhibits “holes” such that pixels that should be
filled with object colors are filled with background colors, cf. Figure 1.

In a second pass, such background pixels need to be filled with the proper
surface color and normal. Of course, one has to carefully choose, which
background pixels are to be filled and which not. Figure 2 shows the issue
and the two cases that need to be distinguished. All white pixels represent
background pixels. While the pixels with a green frame are examples of
holes in the surface that need to be filled, the pixels with a red frame lie
beyond the silhouette (or border) of the object and should maintain their
background color.

To distinguish between background pixels that are to be filled and those
that are not, we use a mask that is been applied in form of a filter using
3 × 3 pixels. When applying this filter, we only look at those background
pixels, where some of the surrounding pixels are non-background pixels. In
Figure 2, the considered pixels are the ones that are framed. To identify
the ones that have a red frame, we use the eight masks shown in Figure 3,
where the white pixels indicate background pixels and the dark pixels could
be both background or non-background pixels. For each background pixel,
we test whether the 3 × 3 neighborhood of that pixel matches any of the

7

Figure 2: Closeup view of the rendered surface’s border. Pixels that have
been filled in the first pass (point rendering) are shown in grey, background
pixels in white. All background pixels close to a filled pixel are framed.
Green frames indicate holes in the surface rendering and the respective pixels
have to be filled. Red frames indicate pixels that are beyond the silhouette
of the object and must not be filled.

cases. In case it does, the pixel is not filled. Otherwise, it is filled with the
color, depth and normal information of the pixel with smallest depth out of
the 3 × 3 neighborhood.

The implementation of this complex test is extremely simple and can
be done efficiently by a single test. Assuming that background pixels have
depth zero, for each mask in Figure 3 the depth values of corresponding
white pixels are summed up. If the product of all eight sums equals zero,
at least one sum was zero, i. e. at least one of the eight filters detected that
the observed background pixel is beyond the object’s silhouette.

The process of filling background pixels using the filter is iterated, until
no more background pixels need to be filled. The number of iterations
depends on the point density and the viewing parameters. It is easy to see,
that every hole in image space with a maximum diameter of n pixels is filled
after at most n iterations.

When applied to the output of the first pass shown in Figure 1, the filling
of background pixels leads to the result shown in Figure 4. Only one filter
pass had to be applied to fill background pixels.

3.3 Filling Occluded Pixels

After having filled all background pixels that represent holes in the surface,
all pixels within the projected silhouette of surface Γ are filled, see Figure 4.
However, there are still holes in the surface caused by pixels that represent
points of occluded surface parts. In a third processing step, such occluded
pixels are replaced by the color, normal and depth values that represent

8

Figure 3: Filters with size 3 × 3 for detecting whether a background pixel
is beyond the projected silhouette of the object. If one of the eight masks
matches the neighborhood of a background fragment, it is not filled. White
cells indicate background pixels, dark cells may be background or non-
background pixels.

the occluding surface part. This third processing step is very similar to the
preceding one of filling background pixels.

Again, we first have to identify the pixels that represent parts of occluded
surfaces by applying a border test with respect to a minimum distance d̃
between two consecutive surface layers, i. e. two front-facing surface parts
that are projected to the same area in image space. For a candidate pixel
with depth d, the used masks are similar to those in Figure 3, where, now,
white pixels represent those pixels with depth values greater than d− d̃ and
dark pixels may have any depth value. If the candidate pixel is identified
as being occluded, its color, normal and depth values are replaced by the
values of the pixel with minimum depth within the filter’s stencil.

In Figure 5, we show the effect of filling occluded pixels when applied
to the skeleton hand data set. The input to this third processing step is
the output of the second step shown in Figure 4. For the filling of occluded
pixels, again, only one iteration was needed.

3.4 Smoothing

The output of the third processing step is a point cloud rendering, where all
holes in the surface have been appropriately filled. For the filling, we used
neighboring pixels of minimum depth, which leads to a piecewise constant
representation of the surface in image space. In order to generate a smooth-
looking representation we apply image-based smoothing as a last processing
step.

For smoothing we apply a low-pass (or smoothing) filter of size 3 × 3
such as the ones shown in Table 1. Though both the box (or mean) filter

9

Figure 4: Filling background pixels applied to the output of point rendering
(Figure 1) of skeleton hand data set. Only one iteration of the filter had to
be applied.

and the Gaussian filter could be applied, we prefer an alleviated Gaussian
filter, where the middle pixel is not weighted by 4

16 but by 16
28 . The stronger

emphasis on the middle pixel avoids blurring of the image. To not mix
background colors with non-background colors, the filter is only applied to
all non-background pixels.

1
9

1 1 1
1 1 1
1 1 1

1
16

1 2 1
2 4 2
1 2 1

Box filter Gaussian filter

Table 1: Common low-pass filters of size 3 × 3. If a filter is applied to a
pixel, it is assigned the weighted sum of all neighboring non-background
pixels with the given weights.

Figure 6 shows the smoothed version of Figure 5. A single iteration of
applying the smoothing filter suffices to produce the desired result.

3.5 Anti-aliasing

When having a close-up look at the results generated by the processing steps
described in the previous four sections, one can observe aliasing artifacts.
Figure 7(a) shows a close-up view of Figure 6. The staircase effects become
particularly obvious along the silhouettes, since the smoothing filter is only
applied to non-background pixels.

10

Figure 5: Skeleton hand data set after point rendering, filling background
pixels, and one step of filling occluded pixels.

To detect silhouette pixels, i. e. pixels at the border of background pixels
and non-background pixels as well as pixels at the border of a front surface
layer and a back surface layer, we apply a high-pass filter to the depth values.
Many high-pass filters exist and are commonly applied for edge detection.
Any of these could be applied. We choose to apply a Laplace filter for
our purposes, as one filter can simultaneously detect edges in all directions.
Table 2 shows the Laplace filter of size 3×3 that we applied to our examples.

0 -1 0
-1 4 -1
0 -1 0

Table 2: Laplace filter used for edge detection.

Having applied the Laplace filter to the depth values, we obtain a texture
with all the silhouette pixels. This resulting texture can be blended with
the color texture to obtain an anti-aliased image. Before blending the two
textures, one can apply a thresholding to the high-pass-filtered depth in-
formation in order to decide whether only the background-foreground tran-
sitions should be anti-aliased (high threshold) or whether the front-back
surface layer transitions should also be further anti-aliased (low threshold).
Figure 7(b) shows the anti-aliased image of Figure 7(a).

11

Figure 6: Point cloud rendering of skeleton hand data set after applying
the entire processing pipeline. For the final smoothing step, an alleviated
Gaussian filter of size 3 × 3 has been applied.

(a) (b)

Figure 7: (a) Close-up view on skeleton hand data set exhibits aliasing
artifacts along the silhouette of the object. (b) Anti-aliasing by blending
with high-pass-filtered depth buffer texture.

4 Depth Peeling

Depth peeling was introduced by Everitt [7] and is a technique to partition
a static 3D scene into sorted layers of geometry. As the name suggests,
the layers are extracted in an iterative fashion by “peeling” off one layer
after another. The sorting is induced by the given viewpoint. Hence, in
each iteration the fragments of the projected visible scene are determined,
stored as a representation of the current layer, and removed to compute
the subsequent layers. Figure 8 illustrates the depth peeling idea. For
illustration purposes, we use depictions of the 2D case. Figure 8 shows
a scene consisting of a planar curve that is rendered to a 1D screen. In
a first step, the curve is projected onto the screen. The visible parts -
depicted in blue - represent the first layer. The first layer is recorded and
removed. Then, the remaining parts are projected. Whatever is visible when

12

projected to the screen is recorded in the second layer - depicted in red -
which subsequently is also removed. The process continues until the scene is
empty or a desired number of layers has been reached. In the example, four
layers - depicted in blue, red, green, and yellow, respectively - are extracted.
The generalization to 3D scenes consisting of surfaces projected to a 2D
screen is straight forward. In fact, the 2D case can be interpreted as a slice
of a 3D scene orthogonal to the screen.

Figure 8: 2D illustration of depth peeling: visible layers of geometry are
extracted from front to back. First layer is shown in blue, second in red,
third in green, and fourth in yellow.

The depth peeling technique is implemented in a multi-pass algorithm,
i.e., to extract n layers the whole scene has to be rendered n times. Each
rendering pass is performed with enabled depth testing such that the points
closest to the viewpoint and their distances to the viewer are recorded. The
first pass of depth peeling is essentially the same as extracting the visible
parts of a scene with the help of a depth buffer test. For the second up to
the nth pass, only those points are rendered, whose distance to the viewer
is greater than the distance recorded in the preceding pass. As a result,
we do not only obtain the visible surface parts, but a sequence of n layers
sorted by distance to the viewer. Of course, the projection that is used
during rendering has to be the same for all n passes. Both perspective and
orthogonal projection are supported.

As we want to avoid any (global or local) object-space surface recon-
struction, we apply the depth peeling technique to scenes consisting of points
only. Consequently, each layer is represented as a set of projected points.
Depending on the sampling rate that has been used to acquire the surface,
the screen resolution, and the distance to the viewer, it may happen that
the points projected to the image plane do not cover all the screen pixels
that a reconstructed surface would. Hence, the surface layer may exhibit
holes where the background or points of hidden surface layers become visi-
ble. Figure 9 illustrates this effect for a 2D scene that is projected to a 1D
screen consisting of five pixels. The blue points represent the first surface
layer. The projection of the first surface layer should cover the entire screen.
However, when the blue points are projected onto the screen, there are pix-
els to which no blue point is mapped. The surface representation of the

13

first layer exhibits holes. What becomes visible is the second surface layer
(red color) or even the background of the scene (grey color). These gaps in
the surface representation of the first layer need to be filled appropriately.
Of course, the same issue may arise for all other extracted layers. In each
rendering pass, we apply image-space operations to the extracted layer to
fill the gaps in the surface.

Figure 9: When projecting first layer (blue) in point cloud representation
to the screen, the layer exhibits holes such that hidden layers (red) or the
background (grey) become visible.

The image-space operations are executed on the rendering texture using
depth information stored in the depth buffer. The operations are executed
in four steps: filling surface gaps in form of background pixels (grey pixel
in Figure 9), filling surface gaps in form of occluded pixels (red pixel in
Figure 9), smoothing the image for an improved rendering quality of the
extracted layer, and anti-aliasing applied to the silhouettes and feature lines
in the resulting image, see Section 3.

A result of the described pipeline may be seen in Figure 10. We used the
Turbine Blade dataset2 and extracted the first four surface layers. The re-
sults have been obtained by applying in each depth peeling pass one iteration
of the background pixel filling, occluded pixel filling, Gaussian smoothing,
and anti-aliasing.

5 Transparent Surfaces

Rendering of transparent surfaces is a direct application of depth peeling. It
only requires to blend the acquired layers in the order of extraction. How-
ever, since point clouds are typically dense, it frequently happens that two
or more adjacent points of one surface layer project to the same fragment.
Without taking special care of this case, they would be recorded in separate
layers by the depth peeling technique such that consecutive layers contain
points that should belong to the same surface layer. Figure 11(a) illustrates
this problem in the 2D case. Points of the first surface layer are depicted in

2Data courtesy of Visualization Toolkit.

14

(a) (b)

(c) (d)

Figure 10: Depth peeling applied to the Blade dataset to extract the (a)
first, (b) second, (c) third, and (d) fourth layer. The layers are represented
as point clouds. The gaps between projected points have been filled using
only image-space operations.

blue and of the second surface layer in red. Multiple blue points are mapped
to one pixel of the screen.

We tackle this problem by using, again, parameter d̃, i.e., the minimum
distance between two surface layers. In each rendering pass, depth peeling
records the color of the closest point p for each pixel along with its depth d
that serves as a reference for the next run. If the minimum distance between
two surface layers is d̃, all points that project to the same pixel as point p
and have a depth less than d + d̃ must belong to the same surface layer as
p. Figure 11(b) illustrates this idea for the example from Figure 11(a). The
green boxes of width d̃ indicate the area that is considered as one surface
layer. Hence, the second depth peeling pass discards all points with depth
less than d + d̃ and correctly detects only points belonging to the second
(red) surface layer, see Figure 11(b).

This procedure of skipping points within depth range [d, d+d̃] has already

15

(a) (b)

Figure 11: Depth peeling for transparent rendering: (a) first rendering pass
records closest points and their depths; b) second rendering pass again
records the closest points and their depths, but ignores points less than
d̃ away from the reference depths obtained in the preceding run.

been used to generate the four layers of the Blade dataset shown in Figure 10.
All that is left to do for point cloud rendering with transparency is to blend
the layers front to back with an application-specific opacity value α. The
result can be seen in Figure 12.

Figure 12: Transparent point cloud rendering by blending the four surface
layers of Figure 10 obtained by depth peeling. Blending is executed front to
back with opacity value α = 0.8.

6 Shadow Textures

To determine which parts of a surface are directly lit by a light source and
which parts fall into the shadow of the light source, shadow maps have
proven to be efficient. Our approach to generate point cloud shadow tex-
tures is related yet different in one important aspect. The standard shadow

16

map approach records depth information of the scene as viewed from the
light source. These depth values are then compared during runtime to the
distance of each visible surface point to the light source plane. We, in-
stead, determine and mark all points that are visible from the light source
similar to “pre-baking” irradiance textures for polygonal mesh scenes. We
will see that this approach provides us with more flexibility in the shadow
computation.

Point cloud shadow textures are basically Boolean arrays that store
which points are lit and which not. Once the shadow texture is determined,
lit points are drawn properly illuminated with ambient, diffuse, and specular
reflection components using Phong’s illumination model, while unlit points
are only drawn using the ambient reflection component. This illumination
creates the effect of shadows, as only those points are marked unlit where
the light source is occluded by other surface parts.

To determine which points are visible from the light source, we render
the scene with the light source’s position being the viewpoint with depth
testing enabled. All visible points are marked in an array. However, as in
Section 5 we observe that, due to the high point density, it is not unusual
that several adjacent points of one surface layer project to the same fragment
position. The suggested procedure would only mark the closest point for
each fragment as lit, which would lead to an inconsistent shadow textures.
Figure 13 illustrates the problem for a scene with only one surface layer
and no occlusion. The points of the entire surface should be marked as lit.
However, due to the described issue, only the closest points (red) are marked
as lit, while the others (blue) remain unlit. When observing the scene from
a position different from the position of the light source, the unlit points
become visible and the rendering exhibits strange shadow patterns.

Figure 13: Inconsistent shadow map in case of high point density: mark-
ing only the closest points to the light source as lit, leaves unlit points on
the same surface part. The unlit points become visible when positions of
observer and light source do not coincide.

Again, depth peeling is the key to solve this problem, but we apply it
differently. While for transparent surface rendering our goal was to extract
different surface layers, now we want to find all the points that belong to a
single surface layer, namely the closest one.

17

To decide, which points belong to one layer, we consider again parameter
d̃, i.e., the minimum distance between two surface layers. We render the
point cloud with the light source’s position being the viewpoint. Let d be
the depth of the closest point p for a given pixel. Then, we consider all
points that project to that pixel and have depth values less than d + d̃ as
belonging to the same surface layer as p. Therefore, we mark them as lit.

However, since depth is measured as the distance to the viewing plane,
applying the same offset d̃ for all points would result in an inconsistent
shadow texture. The reason is that the depth of the lit layer should always
be taken perpendicularly to the surface, and not along the viewing direction.
Figure 14 illustrates the problem. In order to account for the change in the
offset, we scale d̃ by a factor that depends on the surface normal. Let v

Figure 14: Adjusting the depth offset: as the depth of the lit layer d̃ should
be measured perpendicularly to the surface, and not along the viewing di-
rection, d̃ should be scaled accordingly to get the proper offset ∆d.

be the viewing direction and n be the surface normal in the light source
domain. Then, the offset is given by

∆d =
1

〈v,n〉
· d̃

Given that the viewing direction in the light source domain is (0, 0,−1), we
obtain that 〈v,n〉 = −nz. To avoid division by zero, this factor is truncated
at some maximum value.

This idea is illustrated in Figure 15, where all blue dots belong to the
first surface layer. They are extracted by considering all those points that
fall in the green boxes of width ∆d

As a first step of the algorithm, we perform a rendering pass to record
the depth d of the closest point for each pixel in the shadow texture. Here we
again have the issue that some pixels of the shadow texture might correspond
to holes in the surface, which would result in surface parts being falsely
marked as lit. To solve this problem, we apply the occluded pixel hole-filling
filter on the shadow texture. This way pixels, which belong to an occluded
surface, will be overwritten in the shadow texture and, hence, remain in
shadow.

Once the shadow texture is acquired, we project all points from the
dataset to the light domain and compare their depth values to the ones stored

18

Figure 15: Shadow map generation: using the depth peeling approach, all
points within the green boxes of width ∆d are marked as lit.

in the shadow map. The points, whose depth is less than the reference depth
plus threshold ∆d, are recorded as lit in the shadow texture. The remaining
points are left unlit. This operation can very efficiently be implemented on
the GPU by using a fragment shader, which takes an array (a texture) of all
point positions as input and outputs a boolean array of the same size. The
values in the boolean array determine whether the respective point from the
input array is lit or not. The shader reads the position of each point from
the input texture and projects it in the light domain. Then it compares its
depth with the one stored in the shadow texture and outputs the result of
the comparison to the same texture position as in the input texture.

During the first depth peeling rendering pass, the depth information is
stored in a texture, which is used as reference for all subsequent runs. All
points that are farther from the light source than the reference distance plus
threshold d̃ must be discarded. During the rendering pass, we first project
the point cloud to the rendering plane and subsequently run the occluded
pixel hole-filling filter to make sure that no points, otherwise visible through
the holes, are falsely marked as lit. The result is then read back and the
respective points are marked as lit in the shadow map. In each iteration,
the marked points are excluded from further investigations.

Since the purpose of rendering the scene from the light source is to mark
points, the information that is rendered is not color and opacity values, but
rather an index number that is passed as an attribute and uniquely identifies
each point in the dataset. For an effective implementation, we make use of
the integer rendering pipeline, which allows us to directly store and read
(unsigned) integer numbers to and from textures. In each rendering pass,
we run the occluded pixel hole-filling filter. The determined points within
distance d̃ to the reference depth are marked as lit in the shadow map. The
process is iterated until there are no more pixels to be marked as lit, i.e.,
when the read back texture is empty.

In Figure 15, the first rendering pass sets the reference depth for all five
fragments and marks the closest points as lit. The second rendering pass
reports further points within distance d̃ to the reference depth for four of

19

the five fragments. These points are also marked as lit. The third rendering
pass does not report back any further points. The procedure halts.

Figure 16(a) shows a point cloud rendering with shadows applied to the
Blade surface shown in Figure 10. It can be observed that the binary mark-
ing whether a point is lit or not results in hard shadows with crisp, sharp
edges. To create more appealing renderings with softer shadows, we approxi-
mate the complex computation of illumination by an area light source using
Monte-Carlo integration methods. A number of randomly chosen sample
points, lying in the plane perpendicular to the light direction and within the
area of the light source, are used as point light sources. A separate shadow
texture is computed for each of them. The resulting binary decision values
are averaged. The resulting shadow texture is the average of all the shadow
textures for the different sample points. It contains no longer just zeros or
ones, but floating-point numbers out of the interval [0, 1]. These numbers
determine to what extent the diffusive and specular components are taken
into account.

Let ka, kd, and ks denote the ambient, diffusive, and specular compo-
nents of the illuminated surface at a specific point. Moreover, let m ∈ [0, 1]
be the value in the shadow texture stored for that particular point. Then,
the surface color at that point is computed as:

c = ka + m · (kd + ks) .

Figure 16(b) shows the result of point cloud rendering with soft shadows
using Monte-Carlo integration methods for the scene that has been shown in
Figure 16(a). We have used 30 samples to compute the shadow texture. In
the lower left of both figures, we provide a zoomed view into a shadow/no-
shadow transition region. The shadows appear much softer in Figure 16(b)
and their edges are much smoother.

This flexibility to extend the shadow computation to other models such
as the presented soft shadows let to the decision to develop the described
point cloud shadow mapping technique.

Since our shadow textures store information per point, they can be ex-
ported and reused for scenes, in which the relative position of the light source
and the models has not changed. For such applications, there is no need to
recompute the shadow texture every time. It can be loaded along with the
point cloud.

7 Results & Discussion

We applied our approach to three types of point cloud data: synthetic data,
data acquired by scanning the boundary surface of 3D objects, and data ob-
tained by extracting points on an isosurface of a volumetric scalar field. The
model of the Turbine Blade (883k points), given as an example throughout

20

(a) (b)

Figure 16: Point cloud rendering with shadows for the Blade dataset: (a)
hard shadows using one point light source; (b) soft shadows using Monte-
Carlo integration methods with 30 samples to compute the point cloud
shadow texture.

the paper, is from the category of scanned 3D objects. Other datasets from
the same category that we have tested our approach on are the Dragon (437k
points) and Happy Buddha (543k points) models3. Although polygonal rep-
resentations of these objects exist, any information beside the point cloud
was not considered. A synthetical dataset we applied our algorithm to is a
set of three nested tori (each 2M points). Finally, we tested our method on
two point clouds obtained from isosurface extraction: one from an electron
spatial probability distribution field referred to as “Neghip” (128k points)4

and the other from a hydrogen molecule field (535k points for 3 nested iso-
surfaces)5.

All results have been generated on an Intel XEON 3.20GHz processor
with an NVIDIA GeForce GTX260 graphics card. The algorithms were
implemented in C++ with OpenGL and OpenGL Shading Language for
shader programming. All images provided as examples or results in the
paper have been captured from a 1024 × 1024 viewport. One iteration of
each of the image-space operations described in Section 4, i.e., background
pixels filling, occluded pixels filling, smoothing, and anti-aliasing, was used
when producing each rendering. A detailed list of computation times for
different datasets, number of layers, number of samples, and resolutions is
given in Table 3.

The frame rates for point cloud rendering with local Phong illumination
are between 102 fps and 7.8 fps for datasets of sizes between 128k and 6M
points and a 1024× 1024 viewport. The computation times exhibit a linear

3Data courtesy of Stanford University Computer Graphics Lab.
4Data courtesy of VolVis distribution of SUNY Stony Brook.
5Data courtesy of SFB 382 of the German Research Council.

21

Dataset Blade Happy Buddha Dragon
points 883k 543k 437k
Resolution 5122 10242 5122 10242 5122 10242

Local illumination 52 52 83 64 103 68

Transparency (3 layers) 17.6 17.5 28 22 35 23
Transparency (6 layers) 8.8 8.8 14 11 18 12

Shadows (1 sample) 26 25 40 39 50 49
Shadows (5 samples) 9 9 14 14 18 17
Shadows (10 samples) 5 5 7 7 9.6 9

Dataset 3 nested tori Neghip Hydrogen
points 3 × 2M 128k 535k in total
Resolution 5122 10242 5122 10242 5122 10242

Local illumination 8 8 235 82 72 48

Transparency (3 layers) 2.7 2.7 83 27 24 15
Transparency (6 layers) 1.4 1.4 43 14 12 8

Shadows (1 sample) 4 3.7 145 64 40 31
Shadows (5 samples) 1.3 1.1 62 35 14 14
Shadows (10 samples) 0.6 0.6 35 22 8 7.5

Table 3: Frame rates in frames per second (fps) for rendering of point clouds
with local illumination only, with transparency (using 3 and 6 blending
layers), and with shadows computed with 1, 5, and 10 samples used for
approximation of an area light source. One step for each hole filling filter
was applied. No pre-computations are necessary.

behavior in the number of points and a sublinear behavior in the number
of pixels. There is no pre-computation such as local surface reconstruction
necessary. All methods directly operate on the point cloud. All operations
are done in image space.

For rendering with transparency, the computation times depend linearly
on the number of transparent layers. For three transparent surface layers, we
obtained frame rates ranging from 28 fps to 2.7 fps. for datasets of sizes be-
tween 128k and 6M points and a 1024×1024 viewport. No pre-computations
are required. Zhang and Pajarola [28] report better performance than depth
peeling, but their approach is only applicable to locally reconstructed sur-
faces using splats and relies on an approximate solution. We are not aware
of any other comparable point-based technique for transparent surface ren-
dering that achieves interactive frame rates.

Figure 17(a) shows a transparent rendering of three nested tori, each
drawn with a different color and having a different opacity value. The re-
quired number of layers to achieve this kind of rendering is six, such that all
surface parts of all three tori are captured and blended. When rendering all
six layers of this 6M point dataset, the frame rate drops to 1.3 fps. During
navigation it may, therefore, be preferable to render just the first layer.

Figures 18 and 19 show examples of how our approach can be applied in
the context of scientific visualization. When a scalar field is only known at

22

Figure 17: Transparent rendering of three nested tori (2M points each) with
six blended layers. Each of the tori is drawn in a different color and with a
different opacity value: the innermost is brown and completely opaque, the
middle one is green with opacity α = 0.5, and the outermost is blue with
opacity α = 0.3.

Figure 18: Point cloud obtained by isosurface extraction of the volumetric
scalar field “Neghip” is rendered with transparency at 25 fps. The surface
is represented by 128k points. Four layers are extracted and blended with
opacity α = 0.7.

23

Figure 19: Three nested isosurfaces are extracted from a hydrogen molecule
scalar field in form of point clouds with a total of 535k points. The visual-
ization with semi-transparently rendered surfaces (at 9.8 fps) allows the user
to observe surfaces that are entirely occluded by others. Each isosurface is
blended with a different opacity values, namely α = 0.5 for the outermost,
α = 0.3 for the middle, and α = 1.0 for the innermost isosurface.

unstructured points in space, an isosurface can be computed by interpolating
between neighboring points. The result is given in form of an unstructured
set of points on the isosurface, i.e., a point cloud [19, 21]. The datasets
we used actually represent scalar fields defined over a structured grid, but
for a proof of concept we re-sampled the datasets at uniform randomly dis-
tributed points in space. In Figure 18, we extracted an isosurface with many
components and 128k points, whereas in Figure 19 we used three isovalues
to extract multiple nested isosurfaces with a total of 535k points. Some sur-
face parts are completely occluded by others. A transparent rendering helps
the user to fully observe the isosurface extraction results. The transparent
point cloud renderings use four and six surface layers, respectively, and run
at frame rates of 25 fps and 9.8 fps.

The frame rates for generating renderings with shadows by first com-
puting a shadow texture are also presented in Table 3. For low number of
samples for Monte-Carlo integration, we achieve interactive rates for most
tested models. For comparable models, our frame rates are higher than what
has been reported for interactive ray tracing on splats [25] and similar to
the ones reported for using shadow maps on splats [4]. These approaches,
however, require a local surface reconstruction from the point cloud rep-
resentation in a pre-processing step. For large datasets such local surface
reconstructions can have a substantial computation time. Wald and Sei-
del [25] report performance of about 5 frames per second for comparable
models with shadows and Phong shading, using a view port of 512x512 on a
2.4GHz dual-Opteron PC. On modern day hardware their approach would
still be slower than what we have achieved (26 fps), since it utilizes only
the CPU. The GPU accelerated EWA splatting approach of Botsch et al. [4]
achieved a frame rate of about 23 fps on a GeForce 6800 Ultra GPU for
rendering a model of 655k points with shadows. For comparison, our ap-
proach renders a 543k points model at 40 fps with one sample for shadows

24

Figure 20: Interactive rendering of the Dragon point cloud model with soft
shadows at 9.6 fps. Ten samples are taken for the Monte-Carlo integration
over the area light source.

computation. On today’s GPUs, their approach would achieve similar per-
formance, but it still requires a pre-processing step to compute the splats.
Moreover, for objects and light sources that do not change their relative
position our approach also allows the shadow texture to be pre-computed
and loaded along the point cloud. This way soft shadows, computed with
lots of samples, can be rendered at highly interactive rates, imposing almost
no load on the rendering pipeline.

A limitation of our approach comes from the resolution of the shadow
texture used to generate the shadow texture. If the resolution is chosen high,
it is likely that the shadow texture will contain more “holes” and hence re-
quire more steps of the hole-filling filter to be applied. If the resolution is
chosen lower, such that a couple of steps suffice, the edges of the shadow
appear crisp and jaggy. This problem can be alleviated by using more sam-
ples for the area light source integration, which will provide soft anti-aliased
shadows. If the scene cannot be rendered with multiple samples at inter-
active rates, an interactive rendering mode can be used. While navigating
through the scene, i.e. rotating, translating or zooming, only one sample
is used for shadow computation to provide high responsiveness. When not
interacting, soft shadows are computed with a given number of samples.

A rendering of the Dragon dataset with shadows is shown in Figure 20.
Ten samples were used for the shadow texture computation. The frame rate
for that rendering is 9.7 fps, which allows for smooth interaction.

Another result of our rendering approach with soft shadows when applied
to the Happy Buddha is given in Figure 21. The frame rates are 7.7 fps. The

25

Figure 21: Interactive rendering of the Happy Buddha point cloud model
with soft shadows at 7.7 fps. Ten samples were taken for the Monte-Carlo
integration over the area light source to compute the shadow texture.

shadow texture for the Buddha dataset was computed with ten samples.
Although all operations were executed without any computations in ob-

ject space, we only introduced one intuitive parameter, namely the minimum
distance d̃ between two consecutive surface layers. This parameter was used
at multiple points within our rendering pipeline. An improper choice of this
parameter can produce severe rendering artifacts. For many datasets there
is a wide range of values from which a suitable value for d̃ can be chosen.
Only when consecutive layers happen to get close to each other as, for ex-
ample, for the Blade dataset, one has to choose d̃ carefully. However, as the
impact of the choice becomes immediately visible, an empirical choice was
quickly made for all our examples.

8 Conclusion

We presented an approach for interactive rendering of surfaces in point cloud
representation that supports transparency and shadows. Our approach op-
erates entirely in image space. In particular, no object-space surface recon-
structions are required. Rendering with transparency is achieved by blend-
ing surface layers that have been computed by a depth peeling algorithm.
The depth peeling approach is also applied to compute point cloud shadow
textures. A Monte-Carlo integration step was applied to create soft shad-
ows. We have demonstrated the potential of our approach to achieve high

26

frame rates for large point clouds. To our knowledge, this is the first ap-
proach that computes point cloud rendering with transparency and shadows
without local surface reconstruction.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG)
under project grant LI-1530/6-1.

References

[1] Anders Adamson and Marc Alexa. Ray tracing point set surfaces. In
SMI ’03: Proceedings of the Shape Modeling International 2003, page
272, Washington, DC, USA, 2003. IEEE Computer Society.

[2] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman,
David Levin, and Claudio T. Silva. Point set surfaces. In VIS ’01:
Proceedings of the conference on Visualization ’01, pages 21–28, Wash-
ington, DC, USA, 2001. IEEE Computer Society.

[3] Marc Alexa, Markus Gross, Mark Pauly, Hanspeter Pfister, Marc Stam-
minger, and Matthias Zwicker. Point-based computer graphics. In
SIGGRAPH 2004 Course Notes. ACM SIGGRAPH, 2004.

[4] Mario Botsch, Alexander Hornung, Matthias Zwicker, and Leif Kobbelt.
High-quality surface splatting on today’s GPUs. In Eurographics Sym-
posium on Point-Based Graphics, pages 17–24, 2005.

[5] Frédéric Cazals and Joachim Giesen. Delaunay triangulation based sur-
face reconstruction. In Jean-Daniel Boissonnat and Monique Teillaud,
editors, Effective Computational Geometry for Curves and Surfaces.
Springer-Verlag, Mathematics and Visualization, 2006.

[6] Florent Duguet and George Drettakis. Flexible point-based rendering
on mobile devices. IEEE Comput. Graph. Appl., 24(4):57–63, 2004.

[7] Cass Everitt. Introduction interactive order-independent transparency.
White Paper, NVIDIA, 2001.

[8] J. P. Grossman and William J. Dally. Point sample rendering. In
Rendering Techniques 98, pages 181–192. Springer, 1998.

[9] Zhiying He and Xiaohui Liang. A novel simplification algorithm based
on mls and splats for point models. In Proceedings of the 2009 Computer
Graphics International Conference, CGI ’09, pages 45–52, New York,
NY, USA, 2009. ACM.

27

[10] Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, David
Koller, Lucas Pereira, Matt Ginzton, Sean Anderson, James Davis,
Jeremy Ginsberg, Jonathan Shade, and Duane Fulk. The digital
michelangelo project: 3D scanning of large statues. In Proceedings
of ACM SIGGRAPH 2000, pages 131–144, July 2000.

[11] Bao Li, Ruwen Schnabel, Reinhard Klein, Zhiquan Cheng, Gang Dang,
and Shiyao Jin. Technical section: Robust normal estimation for point
clouds with sharp features. Comput. Graph., 34:94–106, April 2010.

[12] Lars Linsen. Point cloud representation. Technical report, Fakultät für
Informatik, Universität Karlsruhe, 2001.

[13] Lars Linsen, Karsten Müller, and Paul Rosenthal. Splat-based ray trac-
ing of point clouds. In Proceedings of Fifteenth International Conference
in Central Europe on Computer Graphics, Visualization and Computer
Vision - WSCG 2007, pages 15(1–3), 51–58, 2007.

[14] Ricardo Marroquim, Martin Kraus, and Paulo Roma Cavalcanti. Effi-
cient point-based rendering using image reconstruction. In Proceedings
Symposium on Point-Based Graphics, pages 101–108, 2007.

[15] Tom Mertens, Jan Kautz, Philippe Bekaert, Frank Van Reeth, and
Hans-Peter Seidel. Efficient rendering of local subsurface scattering.
In PG ’03: Proceedings of the 11th Pacific Conference on Computer
Graphics and Applications, page 51, Washington, DC, USA, 2003. IEEE
Computer Society.

[16] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus
Gross. Surfels: surface elements as rendering primitives. In SIGGRAPH
’00: Proceedings of the 27th annual conference on Computer graphics
and interactive techniques, pages 335–342, New York, NY, USA, 2000.
ACM Press/Addison-Wesley Publishing Co.

[17] Ravi Ramamoorthi and Pat Hanrahan. An efficient representation
for irradiance environment maps. In SIGGRAPH ’01: Proceedings of
the 28th annual conference on Computer graphics and interactive tech-
niques, pages 497–500, New York, NY, USA, 2001. ACM.

[18] Liu Ren, Hanspeter Pfister, and Matthias Zwicker. Object space EWA
surface splatting: A hardware accelerated approach to high quality
point rendering. In Computer Graphics Forum, pages 461–470, 2002.

[19] Paul Rosenthal and Lars Linsen. Direct isosurface extraction from scat-
tered volume data. In Beatriz Sousa Santos, Thomas Ertl, and Ken-
neth I. Joy, editors, EuroVis06: Proceedings of the Eurographics/IEEE-
VGTC Symposium on Visualization, pages 99–106. Eurographics Asso-
ciation, 2006.

28

[20] Paul Rosenthal and Lars Linsen. Image-space point cloud rendering.
In Proceedings of Computer Graphics International (CGI) 2008, pages
136–143, 2008.

[21] Paul Rosenthal and Lars Linsen. Smooth surface extraction from un-
structured point-based volume data using PDEs. IEEE Transactions
on Visualization and Computer Graphics, 14(6):1531–1546, 2008.

[22] Szymon Rusinkiewicz and Marc Levoy. QSplat: A multiresolution point
rendering system for large meshes. In Proceedings of ACM SIGGRAPH
2000, pages 343–352, July 2000.

[23] Gernot Schaufler and Henrik Wann Jensen. Ray tracing point sampled
geometry. In Proceedings of the Eurographics Workshop on Rendering
Techniques 2000, pages 319–328, London, UK, 2000. Springer-Verlag.

[24] R. Schnabel, S. Moeser, and R. Klein. A parallelly decodeable com-
pression scheme for efficient point-cloud rendering. In Symposium on
Point-Based Graphics 2007, pages 214–226, September 2007.

[25] Ingo Wald and Hans-Peter Seidel. Interactive ray tracing of point based
models. In Proceedings of 2005 Symposium on Point Based Graphics,
pages 9–16, 2005.

[26] Michael Wand and Wolfgang Straßer. Multi-resolution point-sample
raytracing. In Graphics Interface, pages 139–148, 2003.

[27] Lance Williams. Casting curved shadows on curved surfaces. SIG-
GRAPH Comput. Graph., 12(3):270–274, 1978.

[28] Yanci Zhang and Renato Pajarola. Deferred blending: Image compo-
sition for single-pass point rendering. Comput. Graph., 31(2):175–189,
2007.

[29] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus
Gross. Surface splatting. In SIGGRAPH ’01: Proceedings of the 28th
annual conference on Computer graphics and interactive techniques,
pages 371–378, New York, NY, USA, 2001. ACM.

29

