
CGI 2008 Conference Proceedings manuscript No.
(will be inserted by the editor)

Paul Rosenthal · Lars Linsen

Image-space Point Cloud Rendering

Abstract Point-based rendering approaches have gained
a major interest in recent years, basically replacing global
surface reconstruction with local surface estimations us-
ing, for example, splats or implicit functions. Crucial
to their performance in terms of rendering quality and
speed is the representation of the local surface patches.
We present a novel approach that goes back to the orig-
inal ideas of Grossman and Dally to avoid any object-
space operations and compute high-quality renderings by
only applying image-space operations.

Starting from a point cloud including normals, we
render the lit point cloud to a texture with color, depth,
and normal information. Subsequently, we apply several
filter operations. In a first step, we use a mask to fill back-
ground pixels with the color and normal of the adjacent
pixel with smallest depth. The mask assures that only
the desired pixels are filled. Similarly, in a second pass,
we fill the pixels that display occluded surface parts. The
resulting piecewise constant surface representation does
not exhibit holes anymore and is smoothed by a standard
smoothing filter in a third step. The same three steps
can also be applied to the depth channel and the normal
map such that a subsequent edge detection and curva-
ture filtering leads to a texture that exhibits silhouettes
and feature lines. Anti-aliasing along the silhouettes and
feature lines can be obtained by blending the textures.
When highlighting the silhouette and feature lines dur-
ing blending, one obtains illustrative renderings of the
3D objects. The GPU implementation of our approach

Paul Rosenthal
E-mail: p.rosenthal@jacobs-university.de

Lars Linsen
E-mail: l.linsen@jacobs-university.de

Jacobs University
School of Engineering and Science
Campus Ring 1
28759 Bremen
Germany
Tel.: +49-421-200-3188
Fax: +49-421-200-3103

achieves interactive rates for point cloud renderings with-
out any pre-computation.

Keywords Point Cloud Rendering · GPU Rendering ·
Image-space Rendering

1 Introduction

Surface reconstruction from point clouds has been a vivid
area of research since 3D scanning devices emerged. Tra-
ditional approaches generate triangular meshes that con-
nect the points to form a piecewise linear approximation
of the sampled surface. Geometrically and topologically,
the generated mesh has to represent a manifold, typically
a closed manifold.

As the scanning devices improved, the number of
samples increased significantly. Since the existing tri-
angular mesh generation algorithms scaled superlinearly
in the number of points, the desire arose to replace the
global surface reconstruction with some local operations.
It was the time when point-based rendering approaches
came up. The idea was to render the points directly with-
out generating global connectivity information.

Nowadays, different point-based rendering approaches
exist. The most prominent ones are based on locally ap-
proximating the surface by fitting planes or polynomial
surfaces to a subset of neighboring points. Technically,
these are still (local) surface reconstructions. We propose
an approach that gets back to the original idea of directly
rendering points instead of surface parts surrounding the
points. We do not perform any (pre-)computations in ob-
ject space. Instead, all our processing steps are carried
out in image space.

The first step of our processing pipeline, shown in
Figure 1, is to project all points with normals of the (il-
luminated) point cloud to the screen (or image) space,
see Section 3. In a second and a third step, the holes
in the projected surface need to be filled. The second
step fills holes that incorrectly exhibit background infor-
mation (see Section 4), while the third step fills holes



2 Paul Rosenthal, Lars Linsen

that exhibit occluded (or hidden) surface parts (see Sec-
tion 5). The fourth step smoothes the output to generate
smoothly varying surface color shades, see Section 6.

Optionally, the silhouettes of the generated image can
be anti-aliased in a post-processing step, see Section 7.
The processing pipeline also enables the opportunity to
perform certain illustrative rendering techniques like sil-
houette rendering and feature-line extraction, see Sec-
tion 8.

Anti-aliased
Surface

Rendering

Illustrative
Surface
Rendering

Smooth
Surface
Rendering

Filling Background Pixels

Filling Occluded Pixels

Smoothing

Anti-aliasing

Illustrative Rendering

Point Rendering

Point Cloud

Fig. 1 Process pipeline for image-space point cloud render-
ing.

Since all operations are performed in image space,
they are all implemented to operate on the GPU. Ex-
ploiting the capacities of modern GPUs in terms of speed
and parallelism, we are capable of displaying point clouds
with large numbers of points at interactive rates. Results
are presented in Section 9 and discussed in Section 10.

2 Related Work

Point cloud representation of surfaces has gained increas-
ing attention over the last decade. One milestone was the
Michelangelo project [5], where huge amounts of sur-
face points have been generated for the first time. As
the number of points is steadily increasing, generating
global triangular meshes is often unfeasible because of

exploding computation times. Therefore, several local or
approximating methods were proposed [3].

Alternatively, several efforts have been made to di-
rectly operate on point cloud surface representations.
One direction of research is to use some kind of surface
elements such as splats or triangle fans [6,7,9,11,16,17].
Although these approaches are fast, they require pre-
computations to generate local neighborhoods. The qual-
ity of the surface representation depends heavily on the
chosen neighborhood computation and typically there is
a trade-off between quality and speed.

A second direction in this field is the point set sur-
face approach [1] and its follow-up papers, where an im-
plicit surface is locally fit to the data. These approaches
involve an iteration and are, generally, slower than the
approaches using surface elements. For an overview over
ongoing research in the field of point-based computer
graphics, we refer to the tutorial by Gross et al. [2] or
the article by Sainz et al. [12].

The above-mentioned approaches can mostly be re-
garded as local surface reconstruction algorithms. How-
ever, with growing number of surface points, sizes of ren-
dering primitives nearly reduce to pixel size, and surface
approximation algorithms should be transferred to im-
age space. This was recently done by Marroquim et al. [8]
and Schnabel et al. [14], who adapted splatting to image
space using hierarchical framebuffers.

This idea of using only surface points as rendering
primitives goes back to Grossman and Dally [4]. Our
approach for image-space operations for rendering point
cloud surfaces also builds upon this idea, but in contrast
to the other approaches mentioned here omits any ge-
ometric considerations and calculations of the radius of
influence of a pixel.

Meanwhile, there also exist some illustrative render-
ing techniques for point cloud surface representations.
Xu et al. [15] use image-space operations to generate
silhouette renderings of point-based models using small
discs in image space.

3 Point Rendering

The goal of the presented approach is to efficiently pro-
duce high-quality renderings of objects and scenes, whose
surfaces are given in point cloud representation. More
precisely, a two-dimensional oriented manifold Γ is given
by a finite set Γ̃ of points on the manifold. In addition
to their position, the points on the surface should also
have surface normals associated with them, i. e.

Γ̃ :=
{

(xi,ni) ∈ Γ × Txi
Γ⊥ : ‖ni‖ = 1

}

,

where Txi
Γ⊥ denotes the orthogonal complement to the

tangent plane Txi
Γ to the manifold Γ in the point xi.

We propose a rendering pipeline for such point clouds
Γ̃ that does not require additional object-space compu-
tations such as local (or even global) geometry or topol-



Image-space Point Cloud Rendering 3

ogy estimations of the manifold Γ . Instead, all processing
steps are performed in image (or screen) space. Conse-
quently, the first processing step in our pipeline is to
project point cloud Γ̃ into image space, including not
only the points but also generating a normal map.

Before projecting the points, they are lit using the lo-
cal Phong illumination model with ambient, diffuse, and
specular lighting. The illuminated points and associated
normals are projected onto the screen using perspective
projection.

During projection we apply backface culling and depth
buffering. The backface culling is performed by discard-
ing back-facing points (xi,ni), with respect to the sur-
face normal ni. The depth test is performed by turning
on the OpenGL depth buffering. Consequently, if two
points are projected to the same pixel, the one closer to
the viewer is considered. The colors as well as the nor-
mals of the projected points are stored in RGBA color
textures using the RGB channels only. Figure 2 shows
the result of our first processing steps. The data set used
is the well-known skeleton hand data set consisting of
327k points. The illuminated points after projection in
conjunction with backface culling and depth buffering
are displayed.

Fig. 2 Rendering of the illuminated surface points of the
skeleton hand data set containing 327k surface points (Data
set courtesy of Stereolithography Archive, Clemson Univer-
sity).

Besides color and position in image space, the depth
of each projected point, i. e. the distance of the repre-
sented point xi to the viewer’s position xv, is required
for our subsequent processing steps. The depth value cal-
culated during the depth test is not linear in the distance
d of the point to the viewer, as it is given by

f(d) :=
(d − znear) zfar

(zfar − znear) d
,

where znear and zfar denote the viewer’s distances to the
near and far planes. Since this depth information is not
suitable for our needs, we replace it by computing the
depth values for each projected point by

f(d) :=
d

zfar

,

and storing this value at the respective position in the
alpha channel of the RGBA textures.

4 Filling Background Pixels

If the sampling rate of surface Γ is high enough such
that the projected distances of adjacent points of point
cloud Γ̃ are all smaller or equal to the pixel size, then the
projected illuminated points that pass backface culling
and depth test produce the desired result of a smoothly
shaded surface rendering. Obviously, this assumption does
not hold in general, especially not when zooming closer
to the object. As a consequence, the resulting surface
rendering exhibits “holes” such that pixels that should
be filled with object colors are filled with background
colors, cf. Figure 2.

In a second pass, such background pixels need to
be filled with the proper surface color and normal. Of
course, one has to carefully choose, which background
pixels are to be filled and which not. Figure 3 shows the
issue and the two cases that need to be distinguished.
All white pixels represent background pixels. While the
pixels with a green frame are examples of holes in the
surface that need to be filled, the pixels with a red frame
lie beyond the silhouette (or border) of the object and
should maintain their background color.

Fig. 3 Closeup view of the rendered surface’s border. Pixels
that have been filled in the first pass (point rendering) are
shown in grey, background pixels in white. All background
pixels close to a filled pixel are framed. Green frames indicate
holes in the surface rendering and the respective pixels have
to be filled. Red frames indicate pixels that are beyond the
silhouette of the object and must not be filled.

To distinguish between background pixels that are
to be filled and those that are not, we use a mask that
is been applied in form of a filter using 3 × 3 pixels.
When applying this filter, we only look at those back-
ground pixels, where some of the surrounding pixels are
non-background pixels. In Figure 3, the considered pixels
are the ones that are framed. To identify the ones that
have a red frame, we use the eight masks shown in Fig-
ure 4, where the white pixels indicate background pixels
and the dark pixels could be both background or non-
background pixels. For each background pixel, we test



4 Paul Rosenthal, Lars Linsen

whether the 3 × 3 neighborhood of that pixel matches
any of the cases. In case it does, the pixel is not filled.
Otherwise, it is filled with the color, depth and normal
information of the pixel with smallest depth out of the
3 × 3 neighborhood.

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
����

��
��
��

��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Fig. 4 Filters with size 3 × 3 for detecting whether a back-
ground pixel is beyond the projected silhouette of the ob-
ject. If one of the eight masks matches the neighborhood
of a background fragment, it is not filled. White cells in-
dicate background pixels, dark cells may be background or
non-background pixels.

The implementation of this complex test is extremely
simple and can be done efficiently by a single test. As-
suming that background pixels have depth zero, for each
mask in Figure 4 the depth values of corresponding white
pixels are summed up. If the product of all eight sums
equals zero, at least one sum was zero, i. e. at least one of
the eight filters detected that the observed background
pixel is beyond the object’s silhouette.

The process of filling background pixels using the fil-
ter is iterated, until no more background pixels need to
be filled. The number of iterations depends on the point
density and the viewing parameters. It is easy to see, that
every hole in image space with a maximum diameter of
n pixels is filled after at most n iterations.

When applied to the output of the first pass shown
in Figure 2, the filling of background pixels leads to the
result shown in Figure 5. Only one filter pass had to be
applied to fill background pixels.

Fig. 5 Filling background pixels applied to the output of
point rendering (Figure 2) of skeleton hand data set. Only
one iteration of the filter had to be applied (Data set courtesy
of Stereolithography Archive, Clemson University).

5 Filling Occluded Pixels

After having filled all background pixels that represent
holes in the surface, all pixels within the projected sil-
houette of surface Γ are filled, see Figure 5. However,
there are still holes in the surface caused by pixels that
represent points of occluded surface parts. In a third pro-
cessing step, such occluded pixels are replaced by the
color, normal and depth values that represent the oc-
cluding surface part. This third processing step is very
similar to the preceding one of filling background pixels,
cf. Section 4.

Again, we first have to identify the pixels that repre-
sent parts of occluded surfaces by applying a border test
with respect to a minimum distance d̃ between two con-
secutive surface layers, i. e. two front-facing surface parts
that are projected to the same area in image space. For a
candidate pixel with depth d, the used masks are similar
to those in Figure 4, where, now, white pixels represent
those pixels with depth values greater than d − d̃ and
dark pixels may have any depth value. If the candidate
pixel is identified as being occluded, its color, normal and
depth values are replaced by the values of the pixel with
minimum depth within the filter’s stencil.

In Figure 6, we show the effect of filling occluded
pixels when applied to the skeleton hand data set. The
input to this third processing step is the output of the
second step shown in Figure 5. For the filling of occluded
pixels, again, only one iteration was needed.

Fig. 6 Skeleton hand data set after point rendering, fill-
ing background pixels, and one step of filling occluded pix-
els (Data set courtesy of Stereolithography Archive, Clemson
University).

6 Smoothing

The output of the third processing step is a point cloud
rendering, where all holes in the surface have been appro-
priately filled. For the filling, we used neighboring pixels
of minimum depth, which leads to a piecewise constant
representation of the surface in image space. In order



Image-space Point Cloud Rendering 5

to generate a smooth-looking representation we apply
image-space smoothing as a last processing step.

For smoothing we apply a low-pass (or smoothing)
filter of size 3 × 3 such as the ones shown in Table 1.
Though both the box (or mean) filter and the Gaussian
filter could be applied, we prefer an alleviated Gaussian
filter, where the middle pixel is not weighted by 4

16
but

by 16

28
, to avoid blurring of the image. To not mix back-

ground colors with non-background colors, the filter is
only applied to all non-background pixels.

1

9

1 1 1
1 1 1
1 1 1

1

16

1 2 1
2 4 2
1 2 1

Box filter Gaussian filter

Table 1 Common low-pass filters of size 3 × 3. If a filter
is applied to a pixel, it is assigned the weighted sum of all
neighboring non-background pixels with the given weights.

Figure 7 shows the smoothed version of Figure 6. A
single iteration of applying the smoothing filter suffices
to produce the desired result.

Fig. 7 Point cloud rendering of skeleton hand data set after
applying the entire processing pipeline. For the final smooth-
ing step, an alleviated Gaussian filter of size 3×3 has been ap-
plied (Data set courtesy of Stereolithography Archive, Clem-
son University).

7 Anti-aliasing

When having a close-up look at the results generated
by the processing steps described in the previous four
sections, one can observe aliasing artifacts. Figure 8(a)
shows a close-up view of Figure 7. The staircase effects
become particularly obvious along the silhouettes, since
the smoothing filter is only applied to non-background
pixels.

To detect silhouette pixels, i. e. pixels at the border
of background pixels and non-background pixels as well
as pixels at the border of a front surface layer and a back

(a) (b)

Fig. 8 (a) Close-up view on skeleton hand data set exhibits
aliasing artifacts along the silhouette of the object. (b) Anti-
aliasing by blending with high-pass-filtered depth buffer tex-
ture (Data set courtesy of Stereolithography Archive, Clem-
son University).

surface layer, we apply a high-pass filter to the depth val-
ues. Many high-pass filters exist and are commonly ap-
plied for edge detection. Any of these could be applied.
We choose to apply a Laplace filter for our purposes, as
one filter can simultaneously detect edges in all direc-
tions. Table 2 shows the Laplace filter of size 3 × 3 that
we applied to our examples.

0 -1 0
-1 4 -1
0 -1 0

Table 2 Laplace filter used for edge detection.

Having applied the Laplace filter to the depth val-
ues, we obtain a texture with all the silhouette pixels.
This resulting texture can be blended with the color
texture to obtain an anti-aliased image. Before blend-
ing the two textures, one can apply a thresholding to
the high-pass-filtered depth information in order to de-
cide whether only the background-foreground transitions
should be anti-aliased (high threshold) or whether the
front-back surface layer transitions should also be fur-
ther anti-aliased (low threshold). Figure 8(b) shows the
anti-aliased image of Figure 8(a).

8 Illustrative Rendering

The detection of silhouettes described in the previous
section and the concurrent processing of a normal map,
throughout the whole pipeline easily opens up for ap-
plying some non-photorealistic rendering techniques to
obtain illustrative drawings [13]. Rendering silhouettes
and feature lines in an exaggerated fashion emphasizes
the geometrical structure of the object. It is often been
used to enhance depth perception, e. g. when two tube-
like surface structures exhibit a crossing in image space.

Applying the Laplace filter of Table 2 to the depth
values leads to a silhouette rendering. As described in
the previous section, a thresholding can be used to adjust
the amount of silhouettes that are rendered. Figure 9(a)
shows such a silhouette rendering for the skeleton hand
data set, while Figure 9(b) shows the blending of sil-
houette rendering with the photorealistic rendering of
Figure 7.



6 Paul Rosenthal, Lars Linsen

(a)

(b)

Fig. 9 (a) Silhouette rendering of skeleton hand data set.
The silhouettes are detected by applying a 3 × 3 Laplace
filter to the depth values. To make the silhouettes more vis-
ible, the lines have been thickened. (b) Combination of sil-
houette rendering with illuminated surface rendering of the
skeleton hand data set (Data set courtesy of Stereolithogra-
phy Archive, Clemson University).

The available normal map permits a yet much more
illustrative type of rendering, by detecting regions with
high surface curvature, i. e. feature lines. The surface cur-
vature at a surface point can be easily obtained by ex-
ploring the cosine of the angle between surface normals
of neighboring surface points. Hence, feature lines can be
extracted from the final rendering, by applying a 3 × 3
filter on the normal map, highlighting regions with high
curvature. An illustrative rendering of the feature lines
of the skeleton hand data set is shown in Figure 10(a).
Figure 10(b) shows the final rendering, including smooth
surface rendering, silhouettes and feature lines.

9 Results

We applied our image-space point cloud rendering to two
types of point cloud data. The first type of data was ob-
tained by scanning 3D objects. Among the skeleton hand
data set used throughout the paper, the data sets in-
clude the well-known Happy Buddha data set (courtesy
of the Stanford University Computer Graphics Labora-
tory) and the dragon data set (courtesy of the Stanford
University Computer Graphics Laboratory). Of course,
polygonal models of these objects exist, but for testing
our algorithm we neglected any further information be-
side the actual point cloud. The second type of data sets

(a)

(b)

Fig. 10 (a)Rendering of the feature lines of skeleton hand
data set. The feature lines are detected by applying a 3 × 3
curvature filter to the normal map. (b) Final rendering of
the illuminated skeleton hand data set, after applying the
entire processing pipeline, smoothing and illustrative render-
ing. (Data set courtesy of Stereolithography Archive, Clem-
son University).

were obtained by extracting points on an isosurface of a
volumetric scalar field [10]. We applied our methods to
the Turbine Blade data set provided with the Visualiza-
tion Toolkit.

All images have been generated on an Intel XEON
2.66 GHz processor, with a NVIDIA Quadro FX 4500
graphics card. The algorithm was implemented in C++
with OpenGL. For the GPU implementation, we used
the OpenGL Shading Language.

We have been able to achieve interactive framerates
even when applying the entire processing pipeline includ-
ing anti-aliasing or illustrative rendering. A detailed list-
ing of the computation times of the individual process-
ing steps for three different data sets is given in Table 3.
Note, that the overall framerate nearly doubles if no nor-
mal map has to be processed or if only the feature lines
have to be extracted without showing the illuminated
surface. All shown results are computed in a 1024×1024
viewport.

Figure 11 shows an image-space rendering of the Happy
Buddha data set consisting of 544k points. The images
are generated using three iterations for filling background
pixels and one iteration each for filling occluded pixels
and smoothing the image. Due to omitting the process
of the normal map, we achieved a framerate of 35 fps.

To show the speedup achievable by omitting either
the normal map or the color information, we applied the



Image-space Point Cloud Rendering 7

data set (# points) Dragon (437k) Buddha (544k) Blade (883k)
viewport 512× 512 1024× 1024 512× 512 1024× 1024 512× 512 1024× 1024
point rendering 11.5 ms 12.0 ms 14.2 ms 14.4 ms 24.8 ms 25.2 ms
background fill. iter. 1.9 ms 8.6 ms 2.0 ms 9.3 ms 1.1 ms 8.8 ms
occluded fill. iter. 4.1 ms 14.7 ms 4.1 ms 15.8 ms 3.8 ms 14.2 ms
smoothing 0.9 ms 5.9 ms 1.0 ms 5.9 ms 1.5 ms 7.0 ms
anti-alias./illustrative 1.2 ms 1.9 ms 1.1 ms 1.9 ms 1.1 ms 2.1 ms
overall w. illustr. rend. 51 fps 20 fps 45 fps 18 fps 31 fps 16 fps
overall 95 fps 38 fps 82 fps 35 fps 60 fps 29 fps

Table 3 Computations times for individual processing steps for three different data sets with two sizes for the viewports.
The time in milliseconds is given for each single computation step, applied to the color buffer and normal map. The overall
framerate with illustrative rendering includes the complete processing pipeline applied to both, the color buffer and the normal
map, with required number of iterations. In comparison, the overall framerate for only rendering (including anti-aliasing)
the surface is shown in the last row.

Fig. 11 Image-space rendering of the Happy Buddha data
set with 544k surface points. Background pixels are filled with
three iterations, while occluded pixels are filled with one iter-
ation and one smoothing step is applied. The average fram-
erate for the final rendering is 35 fps.

process pipeline only to the normal map of the dragon
data set and rendered the feature lines in Figure 12.

Finally, we include a picture of an illustrative point
cloud rendering of the Turbine Blade data set with 883k
points in Figure 13. We applied two filter iterations each
for filling background and occluded pixels. In this ex-
ample, one can observe that the filling of occluded pix-
els works perfectly, even if consecutive layers of surfaces
come close to each other. We obtained a framerate of
16 fps.

10 Discussion

The results document that we have been able to achieve
interactive frame rates for all models without any pre-
computations while producing Gouraud-like surface shad-
ing. We want to emphasize that an increasing number
of points would not slow down our algorithm. In fact,
it will, in general, run faster the more points are to be
processed, as increasing point number means increasing

Fig. 12 Rendering of the feature lines of the dragon data set
with 437k surface points. The average framerate is 38 fps.

point density and thus less hole filling. The hole filling
procedure is actually the most time-consuming step of
our algorithm.

Our algorithm requires surface normals at the given
surface points in order to apply the Phong illumination
model and to process the normal map. Any surface ren-
dering with non-constant shading does require surface
normal information at some point. When the point cloud
represents the isosurface of a volumetric scalar field, the
normals are given in form of gradients of the scalar field.
In case we are using scanned objects and no surface nor-
mals are available, they can quickly be computed by com-
puting a least-squares fitting plane through the k-nearest
neighbors. The k-nearest neighbors are fast to compute,
but can typically not be used for local surface reconstruc-
tion, as they lead to gaps in the surface representation
in case of non-equidistant point sampling. However, for
estimating the surface normal, the k-nearest neighbors
are sufficiently precise.

The distance d̃ that has been introduced in Section 5
to distinguish between different front-facing surface lay-
ers needs to be smaller than the distance between any of
two such front-facing surface layers. Since this compari-
son is made in the range of the depth values, which have



8 Paul Rosenthal, Lars Linsen

Fig. 13 Point cloud rendering of the Turbine Blade data
set, consisting of 883k surface points. Filling background pix-
els just like filling occluded pixels is done with two filter it-
erations each. Additional one smoothing step and illustra-
tive rendering is applied, resulting in an average framerate of
16 fps.

been scaled to the interval [0, 1], we could use one dis-

tance d̃ for all our examples and did not encounter any
problem. We chose a rather small distance d̃ = 0.0001.

11 Conclusions

We have presented a novel approach to compute high-
quality renderings of point clouds by only applying image-
space operations. The lit point cloud attached with nor-
mals is projected to image space while depth values are
calculated for each pixel. A sequence of filters are applied
to this image to fill holes in the projected surface in form
of pixels showing background or occluded surface parts.
Finally, a smoothing step is applied to generate smooth
renderings out of the piecewise constant images. In ad-
dition, an anti-aliasing procedure is introduced to avoid
aliasing artifacts at the silhouettes of the surface. An il-
lustrative rendering of the surface can be obtained by
emphasizing such silhouettes in addition to feature lines
that are obtained from the normal map.

The presented approach was implemented on the GPU
and tested on several data sets. It achieves interactive
rates for point cloud renderings without any pre-compu-
tation. The achieved results show correct surface render-
ings that are comparable to those obtained by Gouraud
shading. The illustrative rendering approach can be used
to improve the understanding of the data.

Acknowledgements This work was supported by the
Deutsche Forschungsgemeinschaft (DFG) under the project
LI1530/6-1 ”SmoothViz: Visualization of Smoothed Particle
Hydrodynamics Simulation Data”.

References

1. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin,
D., Silva, C.T.: Point set surfaces. In: VIS ’01: Proceed-
ings of the conference on Visualization ’01, pp. 21–28.
IEEE Computer Society, Washington, DC, USA (2001)

2. Alexa, M., Gross, M., Pauly, M., Pfister, H., Stamminger,
M., Zwicker, M.: Point-based computer graphics. In: SIG-
GRAPH 2004 Course Notes. ACM SIGGRAPH (2004)

3. Allègre, R., Chaine, R., Akkouche, S.: A flexible frame-
work for surface reconstruction from large point sets.
Comput. Graph. 31(2), 190–204 (2007)

4. Grossman, J.P., Dally, W.J.: Point sample rendering. In:
9th Eurographics Workshop on Rendering, pp. 181–192
(1998). URL citeseer.ist.psu.edu/grossman98point.html

5. Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller,
D., Pereira, L., Ginzton, M., Anderson, S., Davis, J.,
Ginsberg, J., Shade, J., Fulk, D.: The digital michelan-
gelo project: 3d scanning of large statues. In: SIG-
GRAPH ’00: Proceedings of the 27th annual conference
on Computer graphics and interactive techniques, pp.
131–144. ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA (2000)

6. Linsen, L.: Point cloud representation. Tech. rep.,
Fakultät für Informatik, Universität Karlsruhe (2001)

7. Linsen, L., Müller, K., Rosenthal, P.: Splat-based ray
tracing of point clouds. Journal of WSCG 13(1–3) (2008)

8. Marroquim, R., Kraus, M., Cavalcanti, P.R.: Efficient
point-based rendering using image reconstruction. In:
Proceedings of Symposium on Point-Based Graphics, pp.
101–108 (2007)

9. Pfister, H., Zwicker, M., van Baar, J., Gross, M.: Surfels:
surface elements as rendering primitives. In: SIGGRAPH
’00: Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, pp. 335–342.
ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA (2000)

10. Rosenthal, P., Linsen, L.: Direct isosurface extraction
from scattered volume data. In: Eurographics / IEEE
VGTC Symposium on Visualization (EuroVis 2006)
(2006)

11. Rusinkiewicz, S., Levoy, M.: QSplat: A multiresolution
point rendering system for large meshes. In: K. Ake-
ley (ed.) Siggraph 2000, Computer Graphics Proceedings,
pp. 343–352. ACM Press / ACM SIGGRAPH / Addison
Wesley Longman (2000)

12. Sainz, M., Pajarola, R., Lario, R.: Points reloaded:
Point-based rendering revisited. In: Sympo-
sium on Point-Based Graphics (2004). URL
http://www.graphics.ics.uci.edu/pdfs/PointsReloaded.pdf

13. Saito, T., Takahashi, T.: Comprehensible rendering of 3-
d shapes. In: SIGGRAPH ’90: Proceedings of the 17th
annual conference on Computer graphics and interactive
techniques, pp. 197–206. ACM Press, New York, NY,
USA (1990)

14. Schnabel, R., Moeser, S., Klein, R.: A parallelly decode-
able compression scheme for efficient point-cloud ren-
dering. In: Proceedings of Symposium on Point-Based
Graphics, pp. 214–226 (2007)

15. Xu, H., Nguyen, M.X., Yuan, X., Chen, B.: Interactive
silhouette rendering for point-based models. In: Pro-
ceedings of Symposium On Point Based Graphics. ETH
Zurich, Switzerland (2004)

16. Yuan, X., Chen, B.: Illustrating surfaces in volume. In:
Proceedings of Joint IEEE/EG Symposium on Visual-
ization (VisSym’04), pp. 9–16, color plate 337. the Euro-
graphics Association (2004)

17. Zhang, Y., Pajarola, R.: Deferred blending: Image com-
position for single-pass point rendering. Comput. Graph.
31(2), 175–189 (2007)


