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Abstract

Point clusters occur in both spatial and non-spatial data. In the former context they may represent segmented

particle data, in the latter context they may represent clusters in scatterplots. In order to visualize such point

clusters, enclosing surfaces lead to much better comprehension than pure point renderings.

We propose a flexible system for the generation of enclosing surfaces for 3D point clusters. We developed a GPU-

based 3D discrete Voronoi diagram computation that supports all surface extractions. Our system provides three

different types of enclosing surfaces. By generating a discrete distance field to the point cluster and extracting

an isosurface from the field, an enclosing surface with any distance to the point cluster can be generated. As

a second type of enclosing surfaces, a hull of the point cluster is extracted. The generation of the hull uses a

projection of the discrete Voronoi diagram of the point cluster to an isosurface to generate a polygonal surface.

Generated hulls of non-convex clusters are also non-convex. The third type of enclosing surfaces can be created

by computing a distance field to the hull and extracting an isosurface from the distance field. This method exhibits

reduced bumpiness and can extract surfaces arbitrarily close to the point cluster without losing connectedness.

We apply our methods to the visualization of multidimensional spatial and non-spatial data. Multidimensional

clusters are extracted and projected into a 3D visual space, where the point clusters are visualized. The respective

clusters can also be visualized in object space when dealing with multidimensional particle data.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—

1. Introduction

Point clusters are sets of data points with a certain similarity
in a given space. Typically, clusters are computed by defin-
ing a similarity metric in the given space and grouping points
that are closest with respect to the chosen metric. Many clus-
tering methods exist; some are automatic, others interactive
or user-guided; some generate a partitioning, others generate
hierarchies. They all have in common that they output sev-
eral sets of data points (i. e., the point clusters) in the given
space, which then have to be visualized in a visual space.
If the given space has a low dimension (2D or 3D), the vi-
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sual space is commonly equal to the given space. Otherwise,
one typically projects the given space to a lower-dimensional
visual space. Choosing a 3D visual space instead of a 2D vi-
sual space provides a higher flexibility and supports keeping
detected clusters separated. Again, many projection meth-
ods exist. In the end, the visualization task is to render point
clusters in a visual space.

A common choice when rendering point clusters is to use
color coding to identify clusters and to render the individual
points in the respective colors. Such a visualization is shown
in Figure 1 a). However, color coding is problematic for hi-
erarchical clusters and, more importantly, point renderings
have severe depth perception problems. Instead, it would be
desirable to render surfaces to represent point clusters. When
properly shaded the surfaces allow for a good depth percep-
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a) b) c) d)

Figure 1: Different visualizations of two point clusters (colored red and blue) from the 2008 IEEE Visualization Design Contest

data. The clusters were found using density-based clustering of the multidimensional feature space and were projected to a

3D visual space using a linear projection. Additionally to the cluster points a), three types of enclosing surfaces are shown. b)

Isosurface extraction from distance field computed using a 3D discrete Voronoi diagram of resolution 256×256×256. c) Hull

of the cluster computed from the isosurface of the distance field. d) Isosurface extraction from the distance field to the hull in c).

tion and they represent the boundary of a continuous sub-
space of the visual space. Such a surface has to adhere to
several desired properties:

• The surface must be a manifold with an unambiguous in-
side/outside property.

• The surface must enclose all points of the point cluster.
• The surface must stay close to the points of the point clus-

ter.
• The surface must be connected, unless the clustering met-

ric does not apply to the visual space.
• The surface must be sufficiently smooth.

It is worth mentioning that a convex hull computation vio-
lates the third postulation in case of non-convex point clus-
ters. Indeed, in the case of two interlaced, but separated
non-convex clusters, convex hull visualization would lead
to overlapping surfaces, which is undesirable. In general,
it should be avoided that an enclosing surface of a cluster
includes any points of the complement of the cluster. We
do not list this as a postulate, as projected multidimensional
clusters may actually overlap in visual space, if the projec-
tion cannot keep the clusters separated.

We propose a flexible system for generating enclosing sur-
faces for point clusters based on 3D discrete Voronoi dia-
gram computations. Our system supports three type of en-
closing surfaces.

The first type of enclosing surfaces is illustrated in Fig-
ure 1 b) and is obtained by exploiting the discrete distance
field that is computed along with the Voronoi tesselation.

The distance field describes the distance to the points of the
point cluster. Extracting isosurfaces from the distance field
leads to an enclosing surface that adheres to the listed prop-
erties. Such a surface is equivalent to a surface one would
obtain by convoluting each point with a radial basis func-
tion, summing all convoluted basis functions, and extracting
surfaces from the resulting field. We can interactively extract
any isosurface from the distance field such that any distance
to the point cluster is supported.

The second type of enclosing surfaces is obtained by ex-
ploiting the natural neighborhood property induced by the
Voronoi tesselation with respect to an appropriate isosurface
of the distance field. Where three Voronoi regions come to-
gether, we generate a triangle that connects the points of the
respective Voronoi regions. This approach leads to a surface
that describes a hull of the point cluster, i. e., a triangular
mesh whose vertices are a subset of the points of the point
cluster, as shown in Figure 1 c). Note that the hull actually is
non-convex in the case of non-convex point clusters. This ap-
proach is related to the α-shape approach [EM94] for surface
reconstruction. The difference is that the α-shape approach
is applied for surface reconstruction from point clouds, i. e.,
from points that all are supposed to lie on the surface, while
our approach is applied to point clusters, where the majority
of the points is supposed to lie inside the generated surface.
The equivalent of the α-value in our approach would be the
isovalue that is chosen to select the isosurface of the distance
field.

The third type of enclosing surfaces addresses the issue
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that the surfaces of the first type typically lead to bumpy
surfaces. Hence, we propose to generate surfaces that are not
isodistant to the point cluster, but isodistant to the hull, i. e.,
to the enclosing surface of the second type. An illustration
of such an enclosing surface is shown in Figure 1 d). We
describe how the 3D discrete Voronoi diagram computation
can be adjusted accordingly to produce a distance field to the
hull. Then, we can interactively generate enclosing surfaces
with any distance to the hull by extracting isosurfaces from
the new distance field. The resulting enclosing surfaces are
much less bumpy than the ones of the first type and they still
stick close to the point cluster. In fact, the isovalue can be
chosen arbitrarily small without violating the connectedness
postulate.

Our methods for computing enclosing surfaces can be ap-
plied to different tasks in both spatial and non-spatial data vi-
sualization. In terms of non-spatial data, our methods apply
to any 3D scatterplot with a given classification. Classifica-
tion can be obtained with respect to the given 3D space, but
also with respect to a multidimensional space, to subspaces
thereof, or to individual dimensions. One obvious example
would be the visualization of categorical data. In terms of
spatial data, our methods apply to any particle data set with
a given segmentation. Segmentation can be obtained with re-
spect to a given data field, but also with respect to a derived
field or to multidimensional feature space clustering. One
example would be the visualization of a derived characteris-
tic property like positive, negative, and zero divergence of a
vector field.

We evaluate our system by applying it to two tasks from
multidimensional data visualization and discuss the three
types of enclosing surfaces. The first task is the common in-
formation visualization task of visualizing multidimensional
non-spatial data. We apply a clustering algorithm to the data
points in the given multidimensional space and project the
data into a 3D visual space. We apply our enclosing surface
generation methods to the projected point clusters in 3D vi-
sual space.

The second task is the visualization of multi-field parti-
cle data. In this application, we are dealing with a 3D ob-
ject space and a multidimensional feature space. We apply a
clustering algorithm to the multidimensional feature space.
When projecting the feature space into a 3D visual space,
we produce the analogon to the first task. However, the clus-
tering in feature space also induce a segmentation or par-
titioning in object space. Hence, we can use the 3D object
space as a visual space and apply our enclosing surface gen-
eration methods to the particles, which are segmented with
respect to the feature space clustering. For the enclosing sur-
face generation in object space, the resulting surface must
not be connected anymore, as the clustering was performed
in feature space. The feature space cluster do not need to
belong to one region in object space.

2. Related Work

The first approach feasible for visualizing point clusters was
the blobs method presented by Blinn [Bli82]. Blinn asso-
ciates each point with a radial basis function. Some pa-
rameters control the “blobbiness”. Many modifications and
variations to this method exist [BR01, KV06, RB08]. Still,
the generated enclosing surfaces all follow the original blob
model. For some algorithms an adaptive adjustment of the
radius of influence is necessary. For long thin clusters, all
these approaches lead to bumpy enclosing surfaces.

To overcome this problem, more geometry information
has to be considered for the point cluster. Voronoi dia-
grams [Vor08] have become a valuable and widely used tool
in this context. Since the exact computation of a Voronoi di-
agram is not applicable to large sets of points, many approx-
imation algorithms exist, like (t,ε)-approximate Voronoi di-
agrams [AMM02] or Voronoi Octrees [BCMS05].

For the generation of distance fields, the approximation by
discrete Voronoi diagrams is favorable, which has already
been constructed in many different ways [MRH00, TT97].
With the rise of general purpose computations on graphics
cards, several algorithms using the features of GPUs were
introduced [HT05, SGM05, SPG03]. We follow the ideas
of Hoff et al. [HKL∗99, HCK∗99], improve the proposed
method, and generate 3D discrete Voronoi diagrams. A dis-
cussion can be found in Section 4. With the help of these 3D
discrete Voronoi diagrams, we are able to generate hulls and
enclosing surfaces for point clusters.

3. Enclosing Surfaces

Let M ⊂ D be a set of unstructured sample points in the do-
main D ⊂ R

3. A point cluster C is a non-empty subset of M

with points having a certain common property. Intuitively,
clusters consist of points lying close together, although this
may not be true, if the regarded property is not reflected in
the distribution of M within D.

The goal is to find a closed orientable surface Γ surround-
ing point cluster C, i. e., all points of C should lie on one side
of Γ. Additionally, the surface Γ should be smooth but also
close to the points of C to exhibit the structure and distribu-
tion of the point cluster in the visual space D.

To generate a surface fulfilling these requirements, we
developed algorithms based on Voronoi tesselations. For a
given geometric structure such as point cluster C, Voronoi
tesselations compute for each position x ∈ D the closest
point of the geometry. They also deliver the distance of x

to that closest point. In addition, they provide neighborhood
information for the geometrical primitives; primitives with
neighboring Voronoi cells are natural neighbors.

As 3D Voronoi diagrams are expensive to compute, we
use a discrete version, which can be supported by a GPU
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implementation. For the discretization, we generate a uni-
form regular hexahedral grid (voxel grid) and sample the
point cluster to that grid. Multiple points falling in one grid
cell can be treated as a single entry for our purposes. After
discretization, all operations are applied to the discretized
point cluster. Of course, discretization introduces error, but
errors in the subvoxel range of the chosen discretization grid
are not an issue for our application. Details on the 3D dis-
crete Voronoi diagram computation are given in Section 4.
Exploiting the above-mentioned information provided by
Voronoi diagrams, we generate enclosing surfaces for point
clusters. We support three approaches:

Surfaces Isodistant to Point Cluster. To generate enclos-
ing surfaces that are isodistant to the point cluster, we gen-
erate a discrete Voronoi diagram with the points of the point
cluster as geometric primitives. This computation is de-
scribed in the first part of Section 4. We take the distance
field delivered by the discrete Voronoi computation and ex-
tract isosurfaces from them as described in Section 6. The
isovalue can be changed interactively. As a default isovalue
we choose d

2 + ε, where d is the length of the longest edge
in a minimum spanning tree of the point cluster and ε is a
small positive constant. This default isovalue is the smallest
value that ensures that the isosurface is connected.

Hull of Point Cluster. A surface isodistant to the point
cluster consists of surface patches that are induced by the
nearest point. Hence, the neighborhood relation of the sur-
face patches also creates a neighborhood information on the
points. This neighborhood information can directly be ob-
tained from the discrete Voronoi diagram by investigating
natural neighborhoods in the isosurface region. When three
neighborhoods come together, the respective points of the
point cluster can be connected with a triangle. Generating
all those triangles leads to a hull in form of a closed surface,
see Section 5.

Surfaces Isodistant to Hull. The bumpiness of the surface
isodistant to the point cluster can be reduced by comput-
ing a surface isodistant to the hull of Section 5. In order to
compute a distance field to the hull, we extend our discrete
Voronoi diagram computation from point clusters to polyg-
onal models as described in the second part of Section 4.
Then, we can apply the isosurface extraction of Section 6 to
the distance field to obtain the enclosing surface. Again, the
isovalue can be changed interactively.

The results of the three types of enclosing surface gener-
ation are discussed in Section 7.

4. 3D Discrete Voronoi Diagrams

For the generation of discrete Voronoi diagrams,
Hoff et al. [HKL∗99] proposed a method making use
of modern GPU capabilities. They developed an algorithm

using cones to generate 2D discrete Voronoi diagrams for
different geometric primitives and proposed ideas on how to
generalize them to 3D discrete Voronoi diagrams. We have
pursued their ideas for point primitives and propose a simple
and fast generalization for generating 3D discrete Voronoi
diagrams for scenes with points, lines and polygons.

4.1. Points

A direct generalization of the ideas of Hoff et al. to 3D dis-
crete Voronoi diagrams would require us to render a 3D cone
for each cluster point, i. e. a 3D manifold in a 4D space,
which is then projected into a 3D output buffer. Such a mech-
anism is, of course, not supported by graphics cards. Hence,
we generate the 3D discrete Voronoi diagram as a stack of
2D layers.

Figure 2: Approximating one sheet of a 2D cone by layers

of 1D conic sections.

When doing so, the 3D cones have to be layered, as well.
We obtain layers of 2D conic sections parallel to the axis of
the cone. Figure 2 depict these layers by illustrating every-
thing one dimension lower. Each conic section describes one
sheet of a two-sheeted parabolic hyperboloid. They represent
objects in a 3D space that can be rendered to the respective
2D layer on the GPU.

For each 2D layer of the 3D discrete Voronoi diagram
and each cluster point, the appropriate hyperboloid, i. e., the
conic section associated with the orthogonal distance of the
point to the current layer, is rendered using depth buffering
of the graphics card. Figure 3 illustrates the depth buffering
idea, again, depicting everything one dimension lower. Iter-
ating over all 2D layers completes the 3D discrete Voronoi
diagram.

From the illustration in Figure 2, one can deduce that we
only have to generate a discrete set of conic sections, as we
are only dealing with discrete distances between layers. The
orthogonal distances of the conic sections to the current layer
are given by d = 0,1, . . . ,dmax, where dmax depends on the
grid resolution in the third dimension. Hence, the required

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



P. Rosenthal and L. Linsen / Enclosing Surfaces for Point Clusters Using 3D Discrete Voronoi Diagrams

Figure 3: Generation of a one-dimensional layer of a two-

dimensional discrete Voronoi diagram. For each sample

point one conic section is rendered above the layer with re-

spect to the distance of the point to the layer. Using the depth

buffer and orthogonal projection results in an approximation

of the discrete Voronoi diagram in the current layer.

set of hyperboloids can be precomputed and stored as a tri-
angular mesh. No other geometry needs to be rendered in the
entire process.

a) b)

Figure 4: Projections of different triangulations for a conic

section. The triangulation assures rotational symmetry of the

conic section. All points lie on circles with growing radii.

The number of triangles is determined by the number of tri-

angles in the innermost ring: a) 3, b) 6.

To generate the triangular mesh, we parameterize the hy-
perboloids using the canonical parameterization in cylindri-
cal coordinates. We obtain rings of triangles with growing
radii. The radii double from one ring to the subsequent one.
To assure a close-to-constant triangle-per-diameter ratio, the
amount of triangles are also doubled from one ring to the
subsequent one. This concept also ensures that the approxi-
mation error is bounded by the error in the innermost ring.
Two triangulations with different number of triangles in the
innermost ring are shown in Figure 4. For all examples we
tested, it turned out that choosing six triangles and radius
2 for the innermost ring was a good compromise between
quality and speed. An illustration of triangulated conic sec-
tions with different distances d to the current layer is shown
in Figure 5.

To establish a correspondence between points and conic
sections, we use color. Each point gets assigned a unique

d = 30 d = 100

Figure 5: Illustration of triangulated conic sections with dif-

ferent distances d to the current layer.

color, which is used for rendering the respective conic sec-
tion. Hence, the resulting discrete Voronoi regions are color-
coded. We use the alpha channel to store the depth buffer val-
ues. Hence, a distance field to the points is generated without
extra costs.

4.2. Lines and Polygons

Hoff et al. [HKL∗99] describe a generalization of their 2D
approach to 3D scenes. For handling triangles, they suggest
to use methods for its vertices and lines combined with a ren-
dering of a triangle. Their description is very vague. Render-
ing the triangle itself would actually lead to incorrect results,
unless the triangle is parallel to the layers. This is illustrated
in Figure 6 (in a lower dimension). The black line indicates
the given triangle, whereas the red line indicates the triangle
we would have to draw in order to generate a correct dis-
tance field. However, there is no obvious way on how one
could compute this triangle without complicated geometric
considerations. There is no evidence that Hoff at al. actu-
ally implemented the 3D case. It seems that they only used
a brute-force method to compute 3D discrete Voronoi dia-
grams as stated in their technical report [HCK∗99].

We propose to use a discrete approach for including lines
and polygons into our 3D discrete Voronoi diagram frame-
work. We sample the lines and polygons using points and
reduce the problem to the problem solved in the previous
subsection. This is a simple and effective solution.

For sampling line segments or triangles, we utilize the
graphics card’s rasterization ability to generate a discrete
representation of the geometric primitives over the under-
lying regular grid. This 3D rasterization is done in 2D lay-
ers using orthogonal projection. For each layer represented
as a slab of the underlying regular grid, all line segments
and triangles are clipped to the domain of that layer and or-
thogonally projected to the layer. For each grid cell that is
marked as containing geometry during the rasterization step,
we generate a sample point. Analogously, one could proceed
with any geometric primitive. Any polygon could be handled
by triangulating it in a preprocessing step, although only for
planar simple polygons the distance is well-defined.
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Figure 6: Correct 1D discrete Voronoi diagram generation

for a line and a point. The intersection of the black line with

the hyperbola of the green point, gives a wrong border (cyan

point) of the discrete Voronoi diagram. The correct line to

render would be the red one. We approximate the red line by

discretizing the black line with point samples (indicated as

hyperbolae).

5. Hull Generation

A hull of a point cluster is a connected enclosing surface
whose polygonal representation uses a subset of the given
points as vertices. A hull is the connected enclosing sur-
face with minimum volume. Hence, for certain applications
surfaces may be preferable over isosurfaces of the distance
field.

Exploiting the discrete Voronoi diagram of the point clus-
ter, we first use the distance field to extract a surface isodis-
tant to the point cluster. Connectedness of this surface can be
achieved by considering the length of the longest edge in the
minimum spanning tree of the point cluster for the choice
of the isovalue. However, a larger isovalue is typically desir-
able.

a) b)

Figure 7: Hull generation for a point cluster: a) Extract-

ing an isosurface from the distance field to the point clus-

ter. Voronoi regions on the isosurface induce neighborhoods.

b) Neighbors are connected to form a hull. The image also

shows an isosurface extracted from the distance field to the

hull.

The intersection of the discrete Voronoi diagram with the

extracted isosurface results in a two-dimensional Voronoi di-
agram on the isosurface. Now, we can exploit the natural
neighborhood property of the discrete Voronoi diagram to
produce the hull. For each three Voronoi regions that come
together in a point on the isosurface, a triangle of the hull is
generated that connects the three Voronoi points of the re-
spective Voronoi regions. A lower-dimensional illustration
of this process is shown in Figure 7. Generating triangles for
all triplets of adjacent Voronoi regions results in a triangular
mesh describing the hull of the point cluster. This hull can be
used for displaying the cluster directly or for the generation
of an isosurface to the distance field to the hull, see Figure 7
b).

6. Isosurface Extraction and Rendering

As we are operating on a uniform regular hexahedral grid,
isosurfaces can be extracted from the distance field using a
standard marching cubes technique [LC87]. Once we have
computed the distance field, isosurfaces with any distance
can be extracted. For the rendering of the of the surfaces we
use standard local illumination and Gouraud shading. For
future work, we plan on using higher-quality shading tech-
niques and we plan on investigating whether improved iso-
surface extraction techniques can reduce the typical march-
ing cubes artifacts.

7. Results and Discussion

We have implemented our system using C++ and OpenGL
together with the OpenGL shading language for the GPU
programming part. All computations were done on a 2.66
GHz Intel Xeon processor with an NVIDIA Quadro FX 4500
graphics card. For the generation of the meshes of the hyper-
boloids a radius of r = 2 and an initial number of 6 triangles
was used for the first ring.

The algorithms were applied to point cluster data sets of
different types and origins. The first data set we used was
a time step of the 2008 IEEE Visualization Design Contest
data [WN08]. This is spatial data with a multidimensional
feature space. For each sample point, temperature, density,
mass abundances, and turbulence is given. The data set simu-
lates the propagation of an ionization front through a gas. Al-
though the spatial data is sampled on a volumetric grid, data
points are unstructured in multidimensional feature space.
The feature space was analyzed using a hierarchical density-
based clustering algorithm. The resulting multidimensional
point clusters were linearly projected to a 3D visual space
using a 3D star coordinates layout [LLRR08]. The used pro-
jection is contractive, i. e., it does not break the clusters. We
selected two clusters with very similar characteristic in par-
allel coordinates and show a scatterplot of the cluster points
as well as renderings of all three types of enclosing surfaces
in Figure 1.

By just looking at the scatterplot in Figure 1 a) nearly no
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information about the spatial structure of the clusters is visi-
ble. The enclosing surface isodistant to the points in Figure 1
b) gives a very good perception of the distribution of the
points and the shape of the clusters. The direction in which
the red cluster stretches exhibits high turbulence. From the
figure it also gets immediately clear, why both clusters have
nearly the same properties but were separated by the cluster-
ing algorithm: they differ in terms of turbulence. The hulls
of the cluster points in Figure 1 c) show the real positions of
the cluster points especially interesting in cases were clus-
ters interlace each other, as shown later. In this particular
case the surface isodistant to the hull in Figure 1 d) shows
the most desired visualization of the relation between both
clusters. The smooth surfaces emphasize the global shape of
both clusters and their relation to each other.

It is an important feature of our approach that the isovalue
for extracting the surface isodistant to the hull in Figure 1 d)
can be chosen arbitrarily small without violating the con-
nectedness of the surface, whereas the surface in Figure 1 b)
is constrained to the minimum spanning tree criterion and
would be unconnected for any smaller isovalue.

The second example is a multidimensional data set of un-
structured points in 3D space coming from a smoothed parti-
cle hydrodynamics simulation by Stephan Rosswog, Jacobs
University, Bremen. The data set represents a time step of
the simulation of the disruption of a white dwarf star by a
black hole. For each particle the density, temperature, and
mass abundances are given.

The data points were clustered in feature space using
the same clustering method as above. The resulting three
clusters induce a segmentation in object space. The mul-
tidimensional feature space clusters also form clusters in
object space. We compute the hull for each cluster on a
64× 64× 37-grid and show the relations between them in
Figure 8. The resulting surfaces are connected. The clusters
from Figures 8 a) and b) are interlaced, which could not have
been observed when using, e. g., convex hulls of the cluster
points.

fiso = 0.02 fiso = 0.03

Figure 9: Enclosing surface of a cluster from the "out5d"

data set. The hull of the cluster was generated as well as a

distance field to it. We show isosurfaces extracted from that

distance field with two different isovalues fiso.

The third data set we used is the 5D non-spatial data set

"out5d" (Courtesy of Peter Ketelaar.), which describes sev-
eral physical properties measured by sensors. We apply the
same clustering and projection methods as before. We gen-
erated the hull and a distance field to it. Afterwards, we ex-
tracted isosurfaces from the distance field with different iso-
values. The development of the enclosing surface is shown
in Figure 9.

The computation times for all steps of the distance field
computations via 3D discrete Voronoi diagrams are pre-
sented in Table 1. Note that these steps are performed only
once in a precomputation. The subsequent visualization step
is a mere hull rendering or an isosurface extraction and ren-
dering. All types of generated surfaces stay close to the clus-
ter points and capture all important features also for non-
convex clusters. They also adhere to all the other formulated
postulates.

8. Conclusion

We have presented a system of three methods to compute en-
closing surfaces for point clusters. They all rely on a GPU-
based 3D discrete Voronoi diagram computation, which we
developed to handle points as well as polygonal scenes. The
enclosing surface can be isodistant to the point cluster, a hull,
or isodistant to the hull. All surfaces are well-behaved with
respect to the formulated postulates. The last approach pro-
duces surfaces that are less bumpy than the ones generated
by the first approach. Moreover, the last approach allows for
the generation of enclosing surface that are arbitrarily close
to the hull. Hence, separated clusters that are rendered with
this method will also appear as separated.

We applied our approaches to different scenarios. They
can be used for displaying clusters in a 3D scatterplot. In
our examples, the scatterplot was a projection of a multidi-
mensional space. They can also be used for displaying seg-
mented particle data. In our examples, the segmentation was
obtained by clustering the multidimensional feature space
of the particle data. For multidimensional particle data, our
methods can be used for both visualization in object space
and in the projected feature space.
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a) b) c) d)

Figure 8: Enclosing surfaces of three different clusters (colored green, blue, and red) of a time step of the white dwarf data set.

Using a grid of resolution 64× 64× 37, the hulls to the clusters were extracted. a) Hull of the first cluster exhibiting a hole.

b) Hull of the second cluster. c) Combination of blue and green cluster, showing how the blue cluster fills green cluster’s hole.

d) Rendering of all three cluster hulls. The enclosed volumes of the three hulls are interwoven but non-overlapping.

point cluster #points grid size #filled cells dist. field hull dist. field
VisContest 08 107k 256×256×256 1,553 133.0s 274.7s
White Dwarf 260k 64×64×37 12,323 40.1s 44.7s
out5d 16k 64×64×48 4,833 20.1s 13.0s

Table 1: Computation times for generating the distance field to the points and for generating a distance field to the hull of the

points including hull computation. For each point cluster, the number of points is given together with the dimensions of the used

grid and the number of cells the cluster occupies in the grid.
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