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Executive Summary

Surface extraction is a standard visualization method for scalar volume data and
has been subject to research for decades. Many algorithms for surface extraction
from various data structures and types exist. However, for unstructured point-based
volume data, where no topology or connectivity between data points is given, most
approaches propose to reconstruct the scalar field over a grid and apply standard
surface extraction techniques for the obtained grids. This work introduces a new
method that directly extracts surfaces from unstructured volume data without three-
dimensional mesh generation or reconstruction over a structured grid. The presented
approach consists of two major processing steps: a geometry extraction step and a
point-cloud rendering step.

The geometry extraction step computes points on the isosurface by linearly inter-
polating between neighboring pairs of samples. The needed neighbor information is
retrieved by approximating natural neighbors as provided by Voronoi diagrams. One
presented approximation approach is the generation of a three-dimensional discrete
Voronoi diagram. This is done with the aid of today’s graphics hardware to achieve
reasonably fast results. A second approach for approximating natural neighbors is
partitioning the three-dimensional domain into cells using a kd-tree. The cells are
merely described by their index and bitwise index operations allow for a fast de-
termination of potential neighbors. An angle criterion is used to select appropriate
neighbors from the small set of candidates. The approach is evaluated on several
synthetic data sets and is significantly faster than previously developed algorithms
while assuring nearly the same accuracy. Moreover, it is much more accurate than
reconstructing the scalar field over a regular grid.

In sparsely sampled regions, extracted isosurfaces could be rough especially when
dealing with noisy data. To avoid such issues, a level-set approach can be applied to
the data before isosurface extraction. This results in smoother segmenting surfaces
when extracting the geometry of the zero level set. In contrast to existing level-
set approaches, which operate on gridded data and mainly on regular structured
grids, an approach is presented that directly computes level sets on unstructured
point-based volume data without prior resampling or mesh generation. To suffice
the needs of smooth segmentation regarding an isovalue, a level-set method is cho-
sen that combines hyperbolic advection to the isovalue and mean curvature flow.
The needed function properties like gradient and mean curvature are approximated
in each sample point by a consistent least-squares approach operating in four di-
mensions. Since the approach uses an explicit time-integration scheme, time steps
are bounded by the Courant-Friedrichs-Lewy condition. To avoid small global time
steps, asynchronous local integration can be applied. The practicality of this ap-
proach is shown on simulated smoothed particle hydrodynamics data.

I



The output of the geometry extraction step is a point-cloud representation of the
isosurface, where each point only holds its position information and a vector induc-
ing the surface orientation. A point cloud containing surface normal information is
generated using a least-squares approach. The final rendering step uses point-based
rendering techniques to visualize the point cloud. If a fast and interactive rendering
is needed, an algorithm based on image-space operations is used. The lit point cloud
is directly rendered to screen space, possibly resulting in holes in the rendered sur-
face. These holes are detected using image-space filters and filled with neighboring
surface color information. A final smoothing filter assures a smooth surface render-
ing. If the rendering should include photorealistic effects, a ray-tracing approach is
preferable. The surface is approximated using circular splats with attached normal
field. These splats are then rendered with ray tracing to achieve photorealism.

The presented direct surface extraction algorithm for unstructured point-based vol-
ume data produces results of high quality. By applying the level-set approach in a
preprocessing phase, it allows for a smooth yet correct surface extraction also for
data sets with highly varying point density. Nevertheless, the proposed methods are
competitive with similar powerful approaches in terms of computation speed.
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Chapter 1

Introduction

Everything is vague to a degree you do not realize
till you have tried to make it precise.

Bertrand Russell

The modern world is ruled by strictness and regularity. Not only that nearly all
parts of life are legislated. With the rise of information technology also the rela-
tion between information and people has dramatically changed. Most information is
nowadays stored or transmitted as data, i. e. discretized information, in contrast to
the past, when most of the information has been either “stored” as human knowl-
edge or scriptures. Also the amount of produced data increases more and more.
Nevertheless, it is indispensable not only for scientists to gain insight into the data
to draw conclusions or find results. Hence, it is necessary to provide techniques to
make the huge amounts of data understandable for human mind. This procedure
of reprocessing data into human understandable visual models is the main goal of
visualization.

Since all objects in our world are volumetric, the visualization of volumetric data
has become a major direction over the past years. And as most of the generated
volumetric data sets are gridded, i. e. there exist connectivity informations of the
data points, the great majority of visualization techniques deal with all different
types of gridded data. The most commonly used visualization technique beside direct
volume rendering [DCH88] is the extraction of two-dimensional surfaces with specific
properties in data domain. The simplest definition of such a surface is an isosurface
with respect to an isovalue fiso ∈ R. For a data set representing the scalar field
f : R

3 → R an isosurface is the submanifold Γiso ⊂ R
3, defined by

Γiso :=
{

x ∈ R
3 : f(x) = fiso

}

.

If the points on the surface have to fulfill different properties, these are typically
encoded into an auxiliary scalar field, such that the desired surface is again just an
isosurface to the constructed field. Hence, nearly every surface extraction problem
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can be reduced to the problem of isosurface extraction and there exists a vast variety
of different isosurface extraction algorithms for all different types of grids [CHJ03,
CPJ04, KKDH07, LC87, Pas04, SSS06, WKL+03].

However, many modern measuring methods for environmental parameters, like for
example smart dust [WLLP01] or ocean sensors [RO99], generate data that is not
gridded anymore. These provide new insights by additional degrees of freedom,
i. e. by movement of the measuring instruments themselves. Also many modern
simulation approaches modeling physical processes utilize these additional degrees
of freedom. Mesh-free Lagrangian methods like smoothed particle hydrodynam-
ics [Luc77, GM77] not only simulate the evolution of the data at the sample points
but also simulate the flow of the sample points under respective forces.

In particular, the smoothed particle hydrodynamics method is a method simulating
physical flows. The object of interest, e. g. a fluid or an astrophysical object like a
star, is represented by a discrete set of particles each with a distinct dimension, over
which the objects properties are smoothed by a kernel function. With this repre-
sentation of the object the transformation regarding partial differential equations,
modeling pressures and other forces, is done using a Lagrangian particle method.
More precisely not only the properties like temperature, density, and mass fractions
are affected by the partial differential equations, but also the particle positions. In
every point in time of the simulation the output is an unstructured point-based data
set.

Although so many isosurface extraction approaches have been introduced for various
data structures, there existed no algorithm that directly operates on unstructured
point-based volume data, where no connectivity between the data points is known.
To deal with this type of data, the data was typically resampled over a regular
structured grid using scattered data interpolation techniques or converted into an
irregular grid using a polyhedrization technique. While the former approach may
produce resampling inaccuracies, the latter is typically computationally expensive
and often rather cumbersome to implement.

In this thesis, a complete visualization pipeline for direct surface extraction from
unstructured point-based volume data is presented, i. e. we are not resampling the
data over a structured grid nor are we generating global or local polyhedrizations.
An illustration of the visualization pipeline is shown in Figure 1.1.

Starting from an unstructured point-based scalar data set, isosurfaces can be ex-
tracted using direct isosurface extraction [RL06]. Points on the isosurface are lin-
early interpolated between neighboring sample points. For obtaining these neighbors
two different approaches are introduced, both approximating natural neighbors as
defined by Voronoi diagrams. The former technique utilizes modern graphics hard-
ware to construct discrete Voronoi diagrams to obtain natural neighbors, while the
latter method uses fast neighbor approximations, based on an indexing scheme of
a space partitioning kd-tree. A comprehensive description and comparison in terms
of quality and computation time of both isosurface extraction methods is given in
Chapter 2.

The high flexibility makes unstructured point-based data very powerful and enables
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Direct Isosurface Extraction

Point Cloud

Surface Normal Approximation

Splat-based
Ray Tracing

Image-space
Point-cloud Rendering

Visualization

Data Set

Level Set Process

Unstructured Point-based

Figure 1.1: Pipeline for direct surface extraction from unstructured
point-based volume data.

the modeling of complex relations. However, especially this flexibility raises prob-
lems for direct isosurface extraction. For data sets with highly varying sample-point
density, as often generated by astrophysical simulations, the linear interpolation
between far apart sample points can lead to inaccuracies in the isopoint computa-
tion. To overcome this possible problem, we propose a level-set-based preprocess-
ing step that again directly operates on the unstructured point-based volume data
set [RL08b]. An auxiliary level-set function is introduced at the sample point lo-
cations. The level-set function is deformed following a partial differential equation
combining hyperbolic advection and mean curvature flow such that it stays smooth
and the zero level set approximates the desired isosurface. Spatial derivatives of
the level-set function, which are needed for the level-set process, are directly ap-
proximated using least-squares methods. From this level-set function the desired
isosurface can be extracted, also in noisy data sets or data sets with highly varying
point densities. In Chapter 3 we present the theoretical considerations as well as
practical examples and results of the proposed level-set method.

Since the unstructured point-based data is never resampled and no connectivity
is known, the resulting isosurface is generated in point-cloud representation. More
precisely a set of isopoints is calculated which lie on the isosurface but exhibit no
connectivity information. To avoid time-consuming surface reconstruction steps, the
resulting point cloud has to be visualized using point-based rendering techniques.
We first approximate surface normals at the surface points with a least-squares
approach. Afterwards we open up two possibilities for point-cloud rendering, either
splat-based ray tracing or image-space point-cloud rendering.

CHAPTER 1. INTRODUCTION
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To generate high-quality renderings of the surface with photorealistic effects like
global illumination, reflection, and refraction, a splat-based ray-tracing approach
[LMR07] is presented. Here the surface is locally approximated by small discs (splats)
with attached normal fields and the resulting set of splats is ray traced. This ap-
proach needs some precomputations and is not able to generate interactive visual-
izations.

If an interactive visualization without precomputations is needed, we propose an
image-space point-cloud rendering process [RL08a], generating high-quality and
smooth surface renderings at interactive frame rates without any precomputations.
This method uses modern graphics hardware capabilities to generate point-cloud
renderings. The lit point cloud is projected to screen space. Possible holes in the
surface are filled with image-space filters. The optional processing of an additional
normal map opens up the possibility of applying anti-aliasing or illustrative ren-
dering techniques. Both point-cloud rendering techniques are explained in detail in
Chapter 4.

The proposed visualization pipeline for surface extraction from unstructured point-
based volume data is tested with the help of several well-known data sets as well as
data sets directly provided from the above-mentioned application areas. The results
are assessed in terms of quality and speed. Additionally they are compared to similar
approaches where possible.

CHAPTER 1. INTRODUCTION
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Chapter 2

Direct Isosurface Extraction

Isosurface extraction is the most commonly used visualization technique for scalar
volume data and many isosurface extraction algorithms exist. Although all these
approaches operate on various data structures, no algorithm existed that directly
operated on unstructured point-based volume data, where no grid connectivity is
given.

The most common way of dealing with this type of data is to to resample the data
to a structured grid using scattered data interpolation techniques [FN91]. Scattered
data interpolation is a well-studied field and Park et al. [PLK+06] have shown that
scattered data reconstruction for large data sets can be achieved at interactive or
near-interactive rates when resampling over a regular grid. Unfortunately, such re-
sampling steps always induce inaccuracies, which can grow enormously for data sets
with highly varying point densities.

An alternative would be the calculation of a tetrahedral grid from the unstructured
point-based data [Nie93]. Delaunay tetrahedralizations [Del34] are known to pro-
duce desirable results. Since the asymptotic complexity for the tetrahedralization
is quadratic, it is very time consuming and not practicable for large sets of sample
points. Actually applying the standard tetrahedralization algorithm provided with
the Computational Geometry Algorithms Library [CGA] to a data set with four
million sample points takes 54 minutes of computation time.

Another well-known approach for visualizing scalar volume data is direct volume
rendering [Lev88]. This method is able to produce renderings of isosurfaces directly
from the volumetric data by tracing view rays. Originally proposed for different
types of grids, recently several volume rendering approaches for unstructured point-
based volume data [HE03, HLE04, TSE07] have been proposed. However, the used
scattered data interpolation techniques still introduce interpolation errors. For direct
volume rendering of smoothed particle hydrodynamics data, the visualization tool
SPLASH [Pri07] was proposed, which utilizes the smoothed particle hydrodynamics
kernel to interpolate along the view rays. However, another advantage for isosurface
extraction is the actual extraction of the isosurfaces’ geometry, which can be stored
and used for further research.

CHAPTER 2. DIRECT ISOSURFACE EXTRACTION
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Recently, Co et al. [CPJ04, CJ05] have presented an algorithm for isosurface extrac-
tion from unstructured point-based volume data. However, instead of generating the
points on the isosurface directly from the unstructured volume data, they generate
local tetrahedral grids and compute the isopoints from the local grid. Nevertheless,
this approach is the only one that allows unstructured point-based data as input
and we will compare our approach to this in Section 2.5 in detail.

In this chapter we describe two methods for direct isosurface extraction from un-
structured point-based volume data, the first based on discrete Voronoi diagrams
and the second kd-tree-based. Points on the isosurface are computed by interpolat-
ing between neighboring samples of the volume data set. The inspiration for this
technique comes from the marching tetrahedra algorithm [BCL06, Pas04, TPG99],
where a given tetrahedral structure is used for linear interpolation. Since no connec-
tivity between sample points is given, a neighbor relation has to be calculated. The
use of nearest neighbors [Cle79, Ben80, BF79, FBF77] is not suitable to compute
the pairs of neighboring points especially for highly varying point densities.

Delaunay triangulation

isocontour

1-ring

xi

xj

xk

xl

Figure 2.1: Isopoint computation for unstructured point-based data
via Delaunay triangulation and linear interpolation between natural
neighbors, i. e. members of the 1-ring of a point in the triangulation.
For sample position xi, the outgoing edges to xj, xk, and xl intersect
the isocontour.

The best choice for the neighbor relation would be natural neighbors induced by the
Delaunay tetrahedralization, as illustrated in Figure 2.1. However, the calculation,
which typically implies the calculation of a Voronoi diagram, is not practicable for
large data sets. That is why a method for obtaining an approximation for the natural
neighbors of each sample point is needed. Two different approaches are presented in
the following.

The first approach, described in Section 2.1, does not directly approximate natural
neighbors for each sample point but generates a discrete Voronoi diagram, i. e. an
approximation for the Voronoi diagram of the sample points. From this discrete
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Voronoi diagram, a set of natural neighbor candidates is computed for each sample
point.

A direct approximation of the natural neighbors for each sample point is computed
by the second approach, described in Section 2.2. It uses a spatial domain decom-
position based on a three-dimensional kd-tree and a fast neighbor search based on
an efficient indexing scheme and bitwise operations on the tree indices.

Both algorithms produce sets of neighbor candidates for each sample point. How-
ever, these neighbor candidates only assure a complete surrounding of each sample
with neighbors. A second property of natural neighbors is a distribution around the
point which is proportional to the relative point density. To additionally assure this
property, an angle criterion has to be applied to the neighbor candidates to produce
the final approximation of the natural neighborhood for each sample point. The
algorithm restricting the angles between neighboring points is described in detail in
Section 2.3.

The actual isopoint computation using linear interpolation between neighboring
sample points is described in Section 2.4. A comprehensive overview of the ob-
tained results of both algorithms is given in Section 2.5. Advantages and limitations
of the different approaches are compared and discussed with respect to the actual
data and needs.

Finally, additional applications for the proposed isosurface extraction techniques,
arising in the wide field of multi-dimensional data visualization, are given. In Sec-
tion 2.6 we show how the proposed methods can be used to visualize clusters, ob-
tained from multi-dimensional and multi-variate data.

2.1 Discrete Voronoi Diagram Calculation

For the extraction of reasonable isopoints, a good approximation of the natural
neighborhood of each sample point is needed. The computation of a natural neigh-
borhood would typically base on a Voronoi diagram [Aur91] of the sample points.
However, the exact computation of a three-dimensional Voronoi diagram of n points
has a complexity of O (n2) [Ede87] and is not applicable to big sets of points.

Hence, an approximation of the Voronoi diagram of the sample points is needed. Sev-
eral algorithms for the approximation of Voronoi diagrams like (t, ε)-approximate
Voronoi diagrams [AMM02] or Voronoi Octrees [BCMS08] exist. Here the approxi-
mation by a discrete Voronoi diagram is chosen due to the simple definition and fast
calculation.

Definition 2.1 Let M ⊂ D be a set of unstructured sample points in the domain
D ⊂ R

3. A uniform three-dimensional hexahedral grid G on D is a disjoint covering
of D with equal cubes. These cubes are called grid cells and such a grid will be denoted
regular grid.

A regular grid induces a canonical mapping ψ : M → G of each sample point x ∈M
to one cell of the grid.

CHAPTER 2. DIRECT ISOSURFACE EXTRACTION
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With the introduction of a regular grid G on the domain of the sample points we
define a distance function dG : G×G→ R

+
0 induced by the Euclidian distance d by

dG : (g1, g2) := d (p1, p2) ,

where the point pi denotes the barycenter of the cell gi for i ∈ {1, 2}.

Definition 2.2 Let M ⊂ D be a set of unstructured sample points in D ⊂ R
3 and

G be a regular grid on D. The discrete Voronoi diagram to the set of points M with
respect to G is the function ψV : G → ψ(M), mapping each grid cell of G to the
nearest filled grid cell with respect to dG.

Due to the variety of applications of Voronoi diagrams, the idea of approximating
them with discrete Voronoi diagrams is not new and several approaches exist [TT97,
MRH00]. With the rise of general purpose computations on graphics cards several
algorithms using the features of GPUs were introduced [SPG03, SGM05, HT05].

The presented approach for creating a discrete Voronoi diagram for the sample
points is based on the ideas by Hoff et al. [HCK+99, HKL+99]. They create two-
dimensional discrete Voronoi diagrams by rendering cones and using the depth buffer
of the graphics card. In one rendering step, a cone for each sample point is rendered
to a texture, resulting in a discrete Voronoi diagram. From this texture the natural
neighbors for each of the sample points can be easily derived.

The authors of both papers also describe ideas for remodeling the approach to
generate three-dimensional discrete Voronoi diagrams. This should be done in two-
dimensional layers, as it is not possible to render into three-dimensional textures.
However, as they state in their papers, they are just using a simple brute-force
strategy to calculate the three-dimensional discrete Voronoi diagrams instead of
actually finalizing the ideas and implementing them to show the practicability.

This adoption of the ideas to three dimensions is indeed possible and is in the
presented approach used for generating neighbor candidates. The three-dimensional
discrete Voronoi diagram is generated in two-dimensional layers. In contrast to the
algorithm for two dimensions, points not lying in the actual layer can generate
Voronoi cells there. Hence, all sample points have to be considered for each layer of
the discrete Voronoi diagram.

Moreover, the real three-dimensional distances between points from different layers
do not linearly depend on the two-dimensional distance of the projected points, as
illustrated in Figure 2.2. For this reason, it is not possible to render just cones to
generate the discrete Voronoi diagram. More precisely we also have to use conic
sections, which is explained in more detail in the following.

Following the ideas by Hoff et al., one would need to render a three-dimensional
cone

Cx :=
{

(y1, y2, y3, y4) ∈ R
4 : |(y1, y2, y3) − x| = y4

}

,

represented as a subspace of R
4 for each sample point x ∈ R

3. These cones would
have to be rendered to R

3 using depth testing, resulting in a three-dimensional
discrete Voronoi diagram.

CHAPTER 2. DIRECT ISOSURFACE EXTRACTION
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1 2 3 4 5 1 2 3 4 5

Figure 2.2: Distance of points on a line to a fixed point above the line.
The distance is non-linearly dependent on the distance the points
have on the line.

Unfortunately, no graphics cards exist offering the possibility to render four-
dimensional scenes into three-dimensional buffers. Instead, one has to approximate
each cone by a series of conic sections parallel to the axis of the cone. This ap-
proximation is illustrated in one dimension less in Figure 2.3. With the help of this
approximation, it is then possible to render the three-dimensional discrete Voronoi
diagram in two-dimensional layers.

Figure 2.3: Approximation of one half of a two-dimensional cone by
layers of conic sections.

First, all sample points have to be sorted into the given grid, i. e. each sample point
is assigned to one grid cell and the cell is marked as filled. For each two-dimensional
layer, the respective part of the discrete Voronoi diagram is calculated by rendering

CHAPTER 2. DIRECT ISOSURFACE EXTRACTION
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a certain conic section for each filled grid cell. The appropriate conic section for a
filled cell with midpoint x ∈ R

3 and orthogonal distance t ∈ R to the current layer
is defined by

Cx,t :=

{

(y1, y2, y3) ∈ R
3 :

√

(y1 − x1)
2 + (y2 − x2)

2 + t2 = y3

}

.

The application of depth testing and orthogonal projection leads to an approxi-
mation of the discrete Voronoi diagram in the current layer, as illustrated in one
dimension less in Figure 2.4. The process is repeated for all layers until the discrete
Voronoi diagram is generated for the whole domain.

Figure 2.4: Generation of a one-dimensional layer of a two-dimen-
sional discrete Voronoi diagram. For each sample point, one conic
section is rendered above the layer with respect to the distance of the
point to the layer. Using the depth buffer and orthogonal projection
results in an approximation of the discrete Voronoi diagram in the
current layer.

For the overall process, only a finite number of different conic sections, with
t = 0, 1, 2, . . . , tmax is needed. Here, tmax only depends on the size of the grid in
x3-direction. Hence, the set of needed conic sections can be precomputed and used
throughout the whole process. One has to parameterize the conic sections and ap-
proximate them with triangles. The projections of different triangulations are shown
in Figure 2.5.

The conic sections are parameterized in the canonical way with cylindrical coor-
dinates. The triangulation is done in rings with growing radii. To assure a nearly
constant triangle per diameter ratio, the triangles per ring are doubled just like the
outer radius of each ring in cylindrical coordinates. The user can specify the number
of triangles in the innermost ring and its radius. Given this information, the set
of approximated conic sections can be built. An illustration of conic sections with
different values of the parameter t is shown in Figure 2.6.

CHAPTER 2. DIRECT ISOSURFACE EXTRACTION
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(a) (b) (c)

Figure 2.5: Projection of different triangulations for a conic section.
The triangulation is obtained by utilizing the rotational symmetry of
the conic section. Around one central point all other points are lying
on circles with growing radii. For the pictures, different number of
triangles were used in the first ring, starting from three in (a), four
in (b) to six in (c). The number of triangles in the subsequent ring is
always doubled.

t = 0 t = 30 t = 100

Figure 2.6: Illustration of triangulated conic sections with different
values of the parameter t. All conic sections have the same inner
radius r = 6 and three triangles in the innermost ring.

CHAPTER 2. DIRECT ISOSURFACE EXTRACTION
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Let the grid cells be unit cubes. If the radius of the innermost ring is greater than
one, the approximation error of the triangulation is bounded by the triangulation
error in the first ring. For the presented approach, an inner radius of four was
chosen with three initial triangles. This leads to an approximation error of less
than one, i. e. the approximation error is below grid size.

After the precomputation of the set of conic sections, the main algorithm starts.
For each slice of the volume and for each sample point, the correct conic section is
taken from the look-up table and rendered to a texture using the depth buffer of the
graphics card. Each sample point is assigned a certain color, which the respective
conic section is rendered with. This process ends up in a stack of layered discrete
Voronoi diagrams, representing a three-dimensional discrete Voronoi diagram with
color coded Voronoi regions. An overview of this algorithm is given in Table 2.1.

BuildDVD()
{

approximate set of conic sections
for (each layer l)
{

clear texture and depth buffer
for (each sample point x)
{

render conic section with t = |l − x3| at (x1, x2)
}
read back l from frame buffer

}
}

Table 2.1: Algorithm for the generation of a three-dimensional dis-
crete Voronoi diagram.

The natural neighbor candidates are afterwards extracted for each sample point.
This is done by exploring the whole discrete Voronoi diagram for adjacent Voronoi
regions. If such two regions are found, the points lying in the grid cells corresponding
with the Voronoi regions are marked to be neighbor candidates for each other. Note
that multiple points may fall into one grid cell. All pairs are neighbor candidates
respectively. After finalizing this stage, also all sample points lying in one cell are
marked as neighbor candidates for each other.

This whole process results in a list of neighbor candidates for each sample point,
derived from the discrete Voronoi diagram information. To get the final approxima-
tion for the natural neighbors of each sample point, a set of criteria is applied to
reject some of these candidates. This process is explained in detail in Section 2.3.
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2.2 kd-tree-based Natural Neighbor Approxima-

tion

In Section 2.1 an approach for approximating Voronoi diagrams, which the natural
neighbors are based on, is proposed. Instead of doing so, one can also think of directly
approximating the natural neighborhood of each sample point.

To achieve this, one would first have to clarify the main properties of natural neigh-
bors to find out how to approximate a set of neighbors that has very similar prop-
erties. The main property of the natural neighborhood of a sample point, which is
also fundamental for the proposed surface extraction approach, is that the natural
neighbors surround the point, i. e. the Voronoi cells of the natural neighbors of a
sample point completely separate the point from the rest of the sample points.

This idea of completely surrounding the point by neighboring regions is adopted.
Instead of surrounding a point with Voronoi regions, it should be surrounded by
axis aligned cells, approximating the natural neighborhood. For this purpose, the
sample points are stored in a kd-tree as described in Section 2.2.1. The process of
finding neighbor candidates is based on a fast and efficient indexing scheme and is
described in Section 2.2.2.

2.2.1 Unstructured Point-based Data Storage

Typically, unstructured data points are given by position in space coordinates and
function value. To allow a fast approximation of the natural neighbors for the
n unstructured sample points, they have to be stored in a three-dimensional kd-
tree [Ben75, Ben90].

A three-dimensional kd-tree is a natural generalization of one-dimensional binary
search trees [Knu98]. It is a hierarchical data structure that stores three-dimensional
data points and is organized as an abstract tree with direct relation to the data point
locations in space. Each node stores at most one data point and splits the domain of
the data in two parts with respect to a two-dimensional cutting plane perpendicular
to one of the coordinate axis. The coordinate axes are equal for nodes with the same
depth in the tree. However, the used coordinate axes are alternating with growing
depth. The whole three-dimensional kd-tree represents a partition of the domain in
cuboids, called cells.

Because of memory-saving reasons and fast access via an indexing scheme, the points
are not directly stored in the kd-tree, but in a vector of points v. Thereon the kd-tree
is build recursively. The recursive function to build the tree is shown in pseudocode
in Table 2.2. For every depth i and vector v, v is sorted in xi mod 3-direction, where
x0, x1, and x2 denote the three dimensions. Afterwards v is split in two half-sized
subvectors v1 and v2. The same procedure is recursively applied to the subvectors
as long as they are not empty.
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BuildTree(depth i, vector v)
{

if (size(v) > 0)
{

sort v in xi mod 3-direction
if (size(v) mod 2 = 0)
{

insert median as split into tree
}
else
{

insert median element into tree
remove median element from v

}
if (size(v) > 0)
{

bisect v into v1 and v2 with respect to median element
BuildTree(i+ 1, v1)
BuildTree(i+ 1, v2)

}
}

}

Table 2.2: Recursive function to build the kd-tree.
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There are many ways of choosing the dimension to split in each of the kd-tree
building steps, leading probably to more balanced space partitions. However, for
applying the neighbor searching algorithm, described in the next sections, it is
fundamental to use the cyclic algorithm shown in Table 2.2.

Each cell of the constructed kd-tree contains exactly one sample point. The height
of the tree is ⌈log2(n+ 1)⌉. In the worst case (n = 2j), j ∈ N+, the number of nodes
in the kd-tree is 2n − 1. The whole tree is stored in a vector, where the root is in
position 1 and the children of the node in position j are in positions 2j and 2j + 1.
This allows a fast traversal of the tree. If one interprets the positions of the nodes
in the vector as binary numbers, the traversal gets even faster.

In the following, all integers indexed with d such as ad or 100d denote binary num-
bers. The operator ⊕ denotes the bitwise Boolean exclusive-or operator, such that
ad ⊕ bd means ad XOR bd.

Definition 2.3 The integer operators ≪ and ≫ denote the bit-shift operators, which
are recursively defined by

0. ad ≪ 0 = ad and ad ≫ 0 = ad.

1. ad ≪ j = (ad ≪ (j − 1)) ∗ 2 for all j ∈ N+.

2. ad ≫ j = (ad ≫ (j − 1)) div 2 for all j ∈ N+.

The indices of the nodes in the vector can be interpreted as binary numbers. A
two-dimensional example of this is shown in Figure 2.7. This point of view implies
an indexing scheme for all nodes of the kd-tree.

1d

11d

10d

100d

101d

111d

110d

1000d

1010d

1001d

1110d 1111d

1100d

1011d

1101d

Figure 2.7: Two-dimensional kd-tree. The binary representation of
the position in the tree is denoted for each cell and splitting line.

The parent of a node with index bd is in position bd ≫ 1 in the vector. The
children of this node have the indices bd ≪ 1 and (bd ≪ 1) ⊕ 1d.

Hence, the indexing scheme leads to fast position and relationship queries in the kd-
tree. It is possible to navigate through the tree with fast binary operations. Moreover,
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qualitative propositions about the locations of cells can be made. For instance, the
cells in position 1111d and 1000d in Figure 2.7 lie in diagonally distant corners of
the kd-tree. Many informations are implicitly saved in the indexing scheme and can
be used for speeding up neighbor queries.

2.2.2 Neighbors Search

As shown in Section 2.2.1, the introduced indexing scheme gives insight into the
kd-tree structure just by observing the nodes’ binary positions. This is now used to
find neighbor candidates for the sample points. The search for neighbor candidates
is only done for sample points that lie inside a cell of the kd-tree.

Definition 2.4 Let c be a cell of the kd-tree T . A cell or splitting plane of T is a
subset of the surrounding neighborhood of c, iff it has at least one point in common
with c. The set of indices of all surrounding neighbors of c is denoted by N(c).

A two-dimensional example of the surrounding neighborhood of the cell containing
the point x is shown in Figure 2.8. It is clearly visible that the observed cell, marked
with gray, is completely surrounded by the neighboring cells and splitting lines,
colored in blue.

x

Figure 2.8: Surrounding neighborhood of the cell containing sample
point x. All light blue areas and blue lines belong to the neighbor-
hood.

The way the nodes of the kd-tree are saved in the vector constitutes that the position
of every node and leaf in the tree is clearly determined by the binary representation
of its index in the vector. Thus, the cells and splitting planes can be identified with
their index in the vector.

The surrounding neighbors of a cell can be divided into direct and indirect neighbors.
This classification depends on the location of the neighbors, which is explained in
the following sections in more detail.

2.2.3 Direct Neighbors

For finding surrounding neighbors of cells, the last three steps of the kd-tree building
process, i. e. the last split in each of the three dimensions play an important role. All
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direct neighbors are generated in these steps. More precisely the direct neighbors of
a cell c are all neighboring cells and splitting planes that were generated in the last
three steps of the kd-tree building process.

These neighbors can be easily found by observing the index of the cell and querying
for certain split elements. For these considerations, let bd be the position of the cell
c in the vector.

The splitting planes with indices bd ≫ 1, bd ≫ 2, and bd ≫ 3 are always direct
neighbors of c, because they cover three faces of c. From this one can directly
deduce

{bd ⊕ 1d, bd ⊕ 10d, bd ⊕ 100d} ⊂ N(c)

as direct neighbors.

Figure 2.9 shows a three-dimensional example of a neighborhood configuration. To
obtain the remaining direct neighbors, the splitting planes that are beyond the
already inserted planes have to be checked.

bd ⊕ 111d

bd ⊕ 1d bd

bd ⊕ 100d

bd ⊕ 110d

bd ⊕ 10d

bd ⊕ 101d

Figure 2.9: Direct neighbors of the cell with index bd. The green
splitting plane touches the cell with index bd, in contrast to the red
plane.

For example, the light red splitting plane in Figure 2.9 between bd⊕101d and bd⊕100d

corresponds to index (bd ≫ 1) ⊕ 10d. It has no common point with c and, hence,
does not belong to N(c). Therefore bd⊕101d also can not belong to N(c). The other
case occurs for (bd ≫ 1)⊕1d, the light green plane in Figure 2.9. This plane belongs
to N(c) and we deduce bd ⊕ 11d ∈ N(c).

With some more considerations along the same lines one gets the following con-
ditions to obtain the remaining direct neighbors:

(bd ≫ 1) ⊕ 1d ∈ N(c) ⇒ bd ⊕ 11d ∈ N(c)

(bd ≫ 1) ⊕ 10d ∈ N(c) ⇒ bd ⊕ 101d ∈ N(c)

(bd ≫ 2) ⊕ 1d ∈ N(c) ⇒ bd ⊕ 110d ∈ N(c)

{(bd ≫ 2) ⊕ 1d, (bd ≫ 1) ⊕ 11d} ⊂ N(c) ⇒ bd ⊕ 111d ∈ N(c)

CHAPTER 2. DIRECT ISOSURFACE EXTRACTION
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In fact, all direct neighbors of c can be found by applying binary operations on
bd and at most four comparisons of splitting values from the kd-tree nodes. The
obtained neighborhood covers half of the faces of the cell completely.

2.2.4 Indirect Neighbors

In a second step, the neighbors for the three other faces of each cell c, called indirect
neighbors, have to be obtained. In contrast to the direct neighbors, the indirect
neighbors result from arbitrary steps of the kd-tree generation and the maximum
number of indirect neighbors is not constant.

x

Figure 2.10: Indirect neighbors of x (blue).

The number of cells of a kd-tree for n sample points is O(n). This leads to an
upper bound for the number of indirect neighbors. In two-dimensional case, which
one can see in Figure 2.10, the maximum number of indirect neighbors is O (

√
n),

whereas it is in the three-dimensional case O
(

3
√
n2
)

.

The given upper bounds for indirect neighbors can, in fact, only occur for a small
number of cells in a constructed worst-case scenario. On average, the cell sizes
of neighbored cells in a kd-tree differ not more than one order of magnitude.
Consequently, the average case for a cell in three dimensions has about nine
neighbors for each face, leading to 27 indirect neighbors per cell.

To compute the indirect neighbors, the three splitting planes that cover the re-
maining faces of the cell c have to be found. Obviously, there is exactly one splitting
plane for each dimension. This splitting plane is always opposite to an already found
direct neighbor splitting plane, i. e. both splitting planes are perpendicular to the
same direction. This directly implies that if the direct splitting plane has l digits
in its binary index representation the indirect splitting plane has l − 3j digits for a
j ∈ N+.

Furthermore the splits of the planes go in different directions. That means, if the
observed cell lies above the direct splitting plane, it lies below the indirect splitting
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plane and vice versa. Expressed in the binary indexing scheme this means that if
the direct splitting plane has a 0d as the last bit, the indirect splitting plane has to
have a 1d there.

Let bd be again the position of c in the vector. The three splitting planes that
cover the remaining faces of the cell c can be found by analyzing the sequence of
digits in bd. One has to seek bd from back to front for bit changes in the binary
sequence of each dimension. If j is the digit, where the first bit change in the
dimension appears, then bd ≫ j is the searched splitting plane. If the sequence
corresponding to the dimension is constant, then there are no indirect neighbors
for this dimension, due to the fact that the cell lies at the outer border of the
whole domain.

Example 2.5 Let bd = 1001000011001d. We first search a skip in the x0-sequence,
illustrated at the top of Figure 2.11. In this sequence only the digit 0 appears. That
means c lies in negative x0-direction of every splitting plane. So c has no bounding
plane in negative x0-direction and also no indirect neighbors in this dimension.

1001000011001 – x0

1001000011001 – x1

1001000011001 – x2

Figure 2.11: Example of search for bit changes in each dimension to
determine the indices of the splitting planes (blue).

The second search, in the x1-sequence, delivers a change from 0 to 1 in the bit at
the fifth position counted from the back of bd. So the splitting plane which bounds
c in negative x1-direction is 10010000d. Similarly one gets the second and last plane
of the boundary of c. In positive x2-direction it is 100100d. �

In the first phase of the search for indirect neighbors at most three splitting planes
have been calculated that cover the remaining faces of the cell. Obviously, all other
indirect neighbors have to align to one of the planes. For each of those splitting
planes p, one has to search for all cells and planes that are at the opposite side of p
with respect to c and belong to the surrounding neighborhood of c.

All of these searched cells and planes have a deeper depth in the kd-tree than p.
Another property, that follows immediately is, that all searched planes are never
parallel to p, i. e. they are no splitting planes in the same dimension as p.

With these properties a recursive search is done, which starts in the subtree of p that
does not contain c. The recursive function that performs this search is described in
Table 2.3.

This recursion gradually checks splitting planes for being indirect neighbors. It ends
in cells of the kd-tree which also belong to the surrounding neighborhood. After
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SubtreeSearch(depth i, depth p, node k, cell c)
{

if (k is a leaf)
{

insert k into N(c)
}
else
{

if ((i− p) mod 3 = 0)
{

SubtreeSearch(i+ 1, p,k → child next to c, c)
}
else
{

if (plane has a common point with c)
{

insert k into N(c)
SubtreeSearch(i+ 1, p,k → left child, c)
SubtreeSearch(i+ 1, p,k → right child, c)

}
else
{

SubtreeSearch(i+ 1, p,k → child next to c, c)
}

}
}

}

Table 2.3: Recursive function to search for the indirect neighbors of c
lying on the opposite side of the splitting plane p. Here, i is the depth
of the actual observed node k and p is the depth of the splitting plane
separating the subtree from cell c.
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executing this recursion for all found dividing planes all indirect neighbors of c are
found.

Example 2.6 For the observed cell from Example 2.5, pd = 10010000d was a found
splitting plane for bd = 1001000011001d. The start of the recursive search would be
100100000d. Assuming that this plane lies in positive x1-direction of c, i. e. has no
common point with c, one proceeds with 1001000000d. If this plane has a common
point with c, it has to be inserted into N(c) and the binary search continues with
10010000000d and 10010000001d. Because these planes are three steps deeper than
pd in the kd-tree, they are dividing in the same dimension as pd did. So the binary
search has to proceed with 100100000001d and 100100000011d. The recursion stops
in the next step by obtaining cells belonging to N(c). �

As one can see from the considerations above, only the test if a plane has a common
point with a cell c uses geometric queries, i. e. the dimensions of c and the pivot value
of the splitting. All other operations for searching the kd-tree only use the binary
representation of c and fast binary operations. Thus, the search for surrounding
neighbors has a performance that is similar to nearest neighbor search in kd-trees.

2.3 Angle Criterion

In Sections 2.1 and 2.2, a set of neighbor candidates was obtained for each sample
point. However, both of the approaches only assure a dense covering of each sam-
ple point’s surrounding with neighbor candidates. A second fundamental property
of natural neighbors is the distribution around the point, proportional to the local
point distribution. This property is hardly ever assured in the presented approxima-
tion approaches. This can lead to very undesirable situations, when applying linear
interpolation between neighboring sample points, as shown in Figure 2.12.

Figure 2.12: Example where linear interpolation between two-dimen-
sional neighbor candidates fails. Sample points with function values
below the isovalue are marked red, while points with values above the
isovalue are marked green. The interpolated isopoint, marked light
blue, is farther away from the light blue isocontour than all sample
points.
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Such bad situations can be avoided by restricting the minimum angle between two
neighbor points of each sample point, respectively. This would prevent neighbors
from lying behind each other and is an adaptation of the angle criterion method
Linsen and Prautzsch [LP01, LP03] used for point-based surface representations.

The minimum angle that is used for the angle criterion is motivated by the regular
grid case, shown in Figure 2.13. For a sample point on a regular grid, one would
definitely want the points directly connected by the grid to be neighbors. These
neighbors are colored blue in Figure 2.13. The second category of points that
should be neighbors are the sample points that lie diagonal to the midpoint with
respect to the grid, colored in green.

This choice is consistent with the optimal sphere packing problem in three dimen-
sions [Hal05]. The minimum angle between these chosen neighbors in the regular
case is

α = cos−1

(

√

1

3

)

≈ 54.736◦ .

α

Figure 2.13: Minimal angle α between neighbors derived from the
regular case. In this case it is reasonable to define all direct con-
nected points, colored blue, and all diagonal points, colored green, as
neighbors.

The above described property has to be ensured for the final neighbors of each
sample point. To achieve this, all points in the set of neighbor candidates have to
be checked in terms of this requirement. For each point x, the neighbor candidates
are first sorted according to their quadratic Euclidean distance from x. Afterwards
the list of remaining neighbor candidates is traversed with increasing distance.

For each neighbor candidate, the cosine of the angle to the previously checked neigh-

bors is tested for being smaller than
√

1
3
. If the neighbor candidate fails this mini-

mum angle test it is removed from the list of neighbors. This procedure is illustrated
in Figure 2.14. A detailed description of the algorithm for finding the final neighbors
of each point x with the help of a list of neighbor candidates v is given in Table 2.4.

With applying the criterion described above to the lists of neighbor candidates
resulting from the algorithms of Sections 2.1 or 2.2, a good approximation of natural
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Figure 2.14: Two-dimensional angle criterion test. All neighbors of the
black point are tested one after the other according to their angle to
the closer neighbors. The angle between the red and the blue colored
neighbor is too small. The red neighbor is discarded and the other
points are confirmed as appropriate neighbors.

FinalNeighborSearch(point x, vector of neighbors v)
{

sort v according to distance to x

for(all points y in v)
{

for(all previous points z in v closer than y)
{

if
(

〈y−x,z−x〉
‖y−x‖‖z−x‖

>
√

1
3

)

{
remove y from v

}
}

}
}

Table 2.4: Function to find the final surrounding neighbors for each
point x by applying the minimum angle criterion. The neighbor can-
didates are given in a vector v. After execution of the function only
the final neighbors remain in the vector v.
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neighbors is found for each sample point. The approximation takes into account the
proportional distribution of the neighbors with respect to the local point distribution
as well as the surrounding character of natural neighbors.

2.4 Isopoint Calculation

As a result from the prior steps, a neighborhood of points is generated for each
sample point x approximating the natural neighborhood. Following the idea of sev-
eral well known marching algorithms the isopoints are linearly interpolated between
neighboring sample points on opposite sides of the isosurface with respect to the
function values f and the isovalue fiso.

For each sample point x, the whole surrounding neighborhood is searched for ap-
propriate interpolation candidates, i. e. for each neighbor y the term

(f(x) − fiso) (f(y) − fiso)

is checked for being negative. If this is fulfilled a new isopoint z is linearly interpo-
lated between x and y with respect to the function values and the isovalue, i. e.

z =

∣

∣

∣

∣

fiso − f(y)

f(x) − f(y)

∣

∣

∣

∣

· x +

∣

∣

∣

∣

f(x) − fiso

f(x) − f(y)

∣

∣

∣

∣

· y .

The interpolated isopoints exhibit no surface normals, which are needed for rendering
the isosurface. Instead, they can be provided with an outside vector giving at least
the orientation of the surface. With this it is easy to approximate consistent surface
normals. The assigned outside vector is calculated as

v = (f(x) − f(y)) (x − y) .

Because of the angle criterion, the neighborhood creation is not symmetric, i. e. it is
possible that x is not neighbor of all sample points in its surrounding neighborhood.
Thus, symmetry can not be exploited and some isopoints may be computed twice.
Such duplicates are removed in a final step. The isopoints are sorted lexicographically
regarding the coordinate axes. Duplicates are afterwards direct neighbors in the
sorted list and are removed quickly.

2.5 Results and Discussion

In this section the achieved results from the algorithms above are presented. The
different approaches are applied to several synthetic and real data sets and they are
discussed in matter of performance and quality. All measurements were taken on an
2.66GHz Intel Xeon processor with an Nvidia Quadro FX 4500 graphics card.

First both approaches for approximating natural neighbors, the discrete Voronoi di-
agram generation and the kd-tree-based natural neighborhood approximation, are
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compared in terms of performance. The time for the discrete Voronoi diagram gen-
eration is obviously dependent on the number of grid cells filled with sample points.
Thus, it is also implicitly dependent from the chosen grid size, especially if there
exist cells which include several sample points.

A comparison of the computation times for different grid sizes for just the discrete
Voronoi diagram generation can be seen in Table 2.5. The GPU-based algorithm was
applied to a synthetic data set, with sample points at randomly distributed positions
in a unit cube. For different resolutions of the underlying grid, the number of cells
filled with at least one sample point is given just as the overall computation time and
the computation time per one million voxels. As a consequence of the depth-testing
capabilities of the GPU, the computation time for the discrete Voronoi diagram
generation increases sublinearly with increasing number of voxels.

grid size filled cells comp. time comp. time per 1M voxels

323 8,571 3 sec 91 sec
643 9,828 9 sec 34 sec

1283 9,976 40 sec 19 sec
2563 9,996 139 sec 8 sec

Table 2.5: Computation times for the discrete Voronoi diagram gen-
eration for a data set with 10,000 randomly placed sample points.
For each grid size, the number of cells with sample points, the overall
computation time, and the computation time per million grid voxels
is given. The radius of the innermost ring of each conic section was
r = 2 with 4 triangles.

The computation times for the discrete Voronoi diagram generation in comparison
to the number of filled grid cells are shown in Table 2.6. On a grid with 2563 cells
a number of random grid cells have been marked as filled and the discrete Voronoi
diagram was computed. Obviously, the computation time is linearly dependent on
the number of filled grid cells, but increases sublinearly with increasing ratio of
filled cells. This is due to the fact, that most of the triangles of the conic sections
are directly omitted by the depth test during the rendering.

filled cells 1,250 2,500 5,000 10,000 20,000
comp. time 21 sec 39 sec 81 sec 139 sec 253 sec

Table 2.6: Computation times for the discrete Voronoi diagram gen-
eration in comparison to the number of filled grid cells of a grid with
2563 cells. The radius of the innermost ring of each conic section was
r = 2 with 4 triangles.

The practicability of the approach is shown on astrophysical data sets, simulating
black hole encounters of white dwarfs [RRHD08]. Slices of the computed discrete
Voronoi diagram of the volume data set consisting of 500,000 unstructured sample
points are shown in Figure 2.15. The discrete Voronoi diagram was computed on a
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256× 256× 475 grid. A set of six x-y-planes is extracted for different z-values. The
Voronoi regions are colored respectively to allow a good perception of the three-
dimensional shape of the discrete Voronoi diagram. One also gets a good impression
of the highly varying point density of these data sets.

z = 0 z = 50 z = 100

z = 150 z = 200 z = 250

Figure 2.15: Slices from the discrete Voronoi diagram generated for
the white dwarf data set with 500k unstructured sample points dis-
cretized on a 256×256×475 grid. The radius of the innermost ring of
each conic section was r = 2 with 4 triangles. The pixels of the slices
are colored with random colors with respect to the Voronoi regions.

After having assigned the sample points to the grid, the number of sample points
per grid cell can be very high, as shown in Table 2.7. This means that many points
have to be discarded by the angle criterion leading to additional computation time
in this step. Nevertheless, it is obvious that most of the computation time is spent
on generating the discrete Voronoi diagram, especially at high resolutions of the
underlying grid.

Since the goal of the discrete Voronoi diagram generation is not achieving a per-
fect approximation of the Voronoi diagram, but just a good guess for the natural
neighbors, it was sufficient for all computations and tests, to choose the radius of
the innermost ring of each conic section as r = 2 with 4 initial triangles.

For the second approach, the kd-tree-based natural neighbor approximation, the
same two test data sets were used. The overall natural neighbor approximation is
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data set white dwarf
sample points 500k 4,000k
grid dimensions 128 × 128 × 238 128 × 128 × 269
filled cells 63,386 9,471
average 8 samp./cell 422 samp./cell
maximum 2,305 samp./cell 54,405 samp./cell
dVd generation 580 sec 100 sec
neighb. cand. calc. 5 sec 49 sec
final neighb. calc. 1 sec 4 sec
dVd neighbors 24 441
final neighbors 6 7

Table 2.7: Comparison of the whole discrete Voronoi diagram (dVd)
calculation pipeline for two different data sets of the white dwarf
simulation. For each data set, the resolution of the grid, the number
of filled grid cells after insertion of the sample points, and the average
and maximum number of sample points per filled grid cell are given.
The computation times for the different steps of the pipeline are
stated as well as the number of neighbors before and after applying
the angle criterion.

data set white dwarf
sample points 500k 4,000k
kd-tree generation 0.8 sec 8.9 sec
neighb. cand. calc. 0.7 sec 9.2 sec
final neighb. calc. 0.2 sec 1.0 sec
kd-tree neighbors 11 11
final neighbors 5 5

Table 2.8: Results for the complete kd-tree-based natural neighbor
approximation pipeline applied to two different data sets from the
white dwarf simulation. For each data set, the computation times for
the kd-tree generation, the neighbor candidates calculation, and for
the application of the angle criterion are given as well as the average
number of neighbor candidates and final neighbors.
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significantly faster than using discrete Voronoi diagrams. The computation times
for the whole computation pipeline are presented in Table 2.8. It is obvious that
the kd-tree-based approach is much more flexible and robust against the very high
varying sample point density of the astrophysical data sets. This is mainly because
of the very high adaptability of the kd-tree data structure compared to the regular
grid of the discrete Voronoi diagram.

From the previous considerations it is clearly visible that the natural neighbor ap-
proximation based on discrete Voronoi diagrams is only nearly competitive with the
kd-tree-based approximation for very low resolutions of the underlying grid. That is
why the question about the accuracy of both approaches arises. Here accuracy does
not mean how many of the real natural neighbors are found by the approximations,
but how far the calculated isopoints lie away from the real isosurface.

method dVd-based kd-tree-based
maximum deviation 0.02393 0.03490
relative deviation 0.00181 0.00199
computation time 361 sec 20 sec

Table 2.9: Comparison of discrete Voronoi diagram (dVd) and kd-
tree-based natural neighbor approximation in terms of accuracy. For
this purpose, a synthetic data set with four million sample points,
representing a radial function was used. The sample points were ran-
domly placed in a cubic volume. For the approach based on discrete
Voronoi diagrams, a grid of size 643 was used. The deviations were
measured as averages over ten test runs respectively.

To compare the deviations of the isopoints, both approaches were applied to a syn-
thetic data set with four million data points at randomly sampled positions, repre-
senting a radial scalar field. Isopoints for the same isovalue were extracted using
both approaches with the same angle criterion. Afterwards the average and maxi-
mum deviation of the respective isopoints were calculated. The resulting deviations
are shown in Table 2.9. One can conclude that the high effort in computation time is
not worth the small gain in precision when using the natural neighbor approximation
based on discrete Voronoi diagrams instead of the kd-tree-based approach.

In comparison, the extraction of isopoints by the standard Marching Cubes algo-
rithm [LC87] from a regular data set with 1603 grid points representing the same
scalar field leads to a maximum deviation of 0.0027. Hence, the isosurface extrac-
tion from regular data is about one order of magnitude more precise than the direct
isosurface extraction from unstructured point-based data.

The reduction of the grid size to 323 for the isopoint computation, based on dis-
crete Voronoi diagrams, would reduce the computation time to 112 seconds. Further
reduction of the grid size would not reduce the computation times further, since
the number of neighbor candidates grows enormously. This behavior is illustrated in
Figure 2.16. The overall computation time is plotted against the side length of the
underlying grid using a logarithmic scale. The locally minimal computation times
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Figure 2.16: Graph of the overall computation time for the natural
neighbor approximation based on discrete Voronoi diagrams subject
to the size of the underlying grid for a synthetic data set with four
million sample points. The computation time is given in seconds, the
side length of the cubic grid is given in a logarithmic scale.
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are achieved by using grid sizes which are powers of two, since the computations on
the GPU are optimized for this type of textures. Using a slightly smaller grid size
does not decrease the computation time for generating the discrete Voronoi diagram.
On the other hand, the number of points per cell increases as well as the computa-
tion time for applying the angle criterion, leading to a higher overall computation
time.

Figure 2.17: Splat-based ray tracing of the isosurface extracted with
kd-tree-based isosurface extraction from the radial data set with 16
million sample points.

A rendering of the extracted spherical isosurface can be seen in Figure 2.17. Here
the kd-tree-based isosurface extraction method was applied to a data set with 16
million uniform randomly distributed sample points representing a radial function.
The isosurface was rendered using the splat-based ray tracing technique explained
in Section 4.2.

Finally the direct isosurface extraction method based on kd-trees was applied to
resampled unstructured point-based data sets. The data sets were obtained from
regular data sets by resampling them at uniform randomly distributed sample po-
sitions. The first data set with eight million sample points was generated from the
regular engine data set of size 256 × 256 × 128. The whole process of building the
kd-tree, finding neighbor candidates, applying the angle criterion, and extracting
the 1,300k isopoints lasted only 96 seconds, whereas the isopoint extraction step
took half of the overall time. A visualization of the extracted isosurface using the
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Figure 2.18: Image-space point-cloud rendering of the isosurface gen-
erated with the kd-tree-based isosurface extraction approach from the
engine data set with eight million sample points. (Data set courtesy
of General Electric.)

image-space point-cloud rendering described in Section 4.3 is shown in Figure 2.18.

The second data set with 16 million sample points was generated from the reg-
ular Boston teapot data set of size 256 × 256 × 178. The execution of the whole
kd-tree-based isosurface extraction pipeline generated 243,000 isopoints and took
202 seconds of computation time. A rendering of the extracted isopoints is shown in
Figure 2.19. Here only the lit point cloud was rendered to show the good extraction
of the outer and inner border of the teapot. Also smooth transitions, especially on
the spout and the knob, can be observed easily.

Comparing both presented approaches, it turns out that the latter is more flexible es-
pecially for the irregular point-based data sets often produced by many applications.
The small gain in accuracy for the approach based on discrete Voronoi diagrams is
not worth the loss in computation time compared to the kd-tree-based approach in
many sample data sets. Reducing the used grid size would also not overcome this
problem, since the produced neighbor candidates would grow enormously and the
saved computation time would have to be reinvested in the following step of finding
the final neighbors.

Finally, we compare our results to those obtained by Co et al. [CJ05]. The authors
propose the only method that can be directly compared to our approach, as it
is also able to directly operate on unstructured point-based data. However, our
presented kd-tree-based method achieves a significantly better performance in terms
of computation time. In their paper the authors state an isosurface extraction time of
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Figure 2.19: Rendering of the lit isopoints generated by the kd-tree-
based isosurface extraction method from the Boston teapot data set
with 16 million sample points. (Data set courtesy of Terarecon Inc.,
MERL, and Brigham and Women’s Hospital.)

470 seconds for a very small data set consisting of only 350,000 unstructured sample
points, although the computations have been done on a cluster of 11 computers.
The authors did not apply their method to larger data sets. Even when considering
the development of computer hardware, we achieved a speed-up of several orders of
magnitude with no visual shortfall in terms of quality.

2.6 Surface Extraction from Multi-variate Data

The presented isosurface extraction techniques are mainly designed and best ap-
plicable for visualization of scalar volume data. However, they can be also used to
extract surfaces from unstructured multi-dimensional or multi-variate data. Instead
of representing a three-dimensional scalar function, the unstructured data set M
may consist of a set of data points in R

m or may represent a function

f : R
n → R

m with n,m ∈ N .

One approach for visualizing this type of data is clustering with respect to different
properties, i. e. mapping the points of data set M into a finite set of cluster classes C.
We will now show how such clusters can be visualized, utilizing our direct isosurface
extraction approaches. Therefore, one has to distinguish between volumetric multi-
variate data (n = 3, m > 1) and multi-dimensional data with no spatial reference.
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In the first case of volumetric multi-variate data, the data domain is R
3. The cluster-

ing can take into account either only the data values in R
m or also the positions of

the data points in R
3. Anyway, it will result in a partition of the volumetric data set

into different clusters. The proposed isosurface extraction approaches can be utilized
to visualize the three-dimensional shape of each cluster in different ways.

For visualizing the shape of one cluster, a segmenting surface that separates the
cluster points from the other data points could be extracted. Therefore, the cluster
membership information can be directly encoded into a binary field at the data
points. Each data point belonging to the cluster is assigned function value 1, while
all other data points get function value 0. Applying direct isosurface extraction with
isovalue 0.5 to the binary data set results in a surface segmenting the data domain
with respect to the cluster membership property.

We applied this method to the data set of 2008 IEEE Visualization Design Con-
test [LLR09, RLL08, WN08]. Due to the large size, the provided regular data set
was resampled. This was done at non-equidistant positions to avoid resampling ar-
tifacts, resulting in an unstructured multi-variate data set. The data set represents
a time slice of the simulation of a front ionizing a gas. A hierarchical density-based
clustering [LLRR08] was applied to extract clusters of interest. A splat-based ray
tracing of the surface separating the cluster of ionized gas from the neutral gas is
shown in Figure 2.20.

Figure 2.20: Splat-based ray tracing of the surface segmenting the
cluster of ionized gas from the environment. The unstructured data
set, subject of the 2008 IEEE Visualization Design Contest, simulates
the propagation of an ionization front through a gas. Note that the
boundary of the segmenting surface results from the boundary of the
data domain.
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This cluster visualization can be further improved if additional knowledge about
the data set is available. For example for clusters obtained from smoothed particle
hydrodynamics data, one can utilize the smoothing kernel to obtain a smoothed
membership function for the data points. This will typically result in a smoother
segmenting surface when extracting the isosurface to the isovalue 0.5. An example
showing the color-coded clusters and a splat-based ray-tracing of a segmenting sur-
face for a smoothed particle hydrodynamics data set with 500,000 particles is shown
in Figure 2.21. The same effect would be achievable if the cluster algorithm provides
a probability for the cluster membership of each data point.

(a) (b)

Figure 2.21: Cluster visualization for a smoothed particle hydrody-
namics data set with 500,000 particles. The particles are clustered in
three groups, which are rendered in different colors (red, green, blue)
in (a). A splat-based ray-tracing of the surface separating the blue
cluster from the other particles is shown in (b).

A second technique for visualizing clusters, obtained from unstructured volume data,
would be to use a discrete Voronoi diagram, as described in Section 2.1, to generate
a distance field from the cluster points [RL09]. The distance field can be computed
without any additional effort during the generation of the discrete Voronoi diagram
by recording the values of the depth buffer. A point rendering in feature space of
two clusters from the 2008 IEEE Visualization Design Contest data set is shown
in Figure 2.23 (a). Applying standard techniques for isosurface extraction to this
distance field with an isovalue greater than the largest distance in the minimum
spanning tree of the cluster points, results in a surface isodistant to the cluster
points, cf. Figure 2.22 (a). A rendering of surfaces isodistant to the cluster points of
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Figure 2.23 (a) are shown in Figure 2.23 (b).

A second cluster visualization, obtainable from the distance field to the cluster points
is a cluster hull, enclosing the cluster by connecting cluster points. In contrast to
the convex hull of the cluster points, the cluster hull can be non-convex. A surface
isodistant to the point cluster consists of surface patches that are induced by the
nearest cluster point. Hence, the neighborhood relation of the surface patches also
creates a neighborhood information on the points. This neighborhood information
can directly be obtained from the discrete Voronoi diagram by investigating natural
neighborhoods in the isosurface region. When three neighborhoods come together,
the respective points of the point cluster can be connected with a triangle. Gener-
ating all those triangles leads to a hull in form of a closed surface, as illustrated in
Figure 2.22 (b). The resulting cluster hull for the cluster points from Figure 2.23 (a)
is shown in Figure 2.23 (c). Here, the advantage compared to a convex-hull visualiza-
tion becomes obvious, as the concave parts of the cluster’s shape are well-preserved.
This approach of generating a hull for points is similar to the algorithm of three-
dimensional alpha shapes [EM94]. The choice of the isovalue for the hull isodistant
to the cluster points correlates with choosing the parameter α of the alpha-shapes
algorithm.

(a) (b)

Figure 2.22: Hull generation for a point cluster: (a) Extracting an
isosurface from the distance field to the point cluster. Voronoi regions
on the isosurface induce neighborhoods. (b) Neighbors are connected
to form a hull. The image also shows an isosurface extracted from the
distance field to the hull.

Additionally one can generate a distance field to the triangular mesh of the hull,
again utilizing discrete Voronoi diagrams. By extracting an isosurface from this
field, a third type of surface visualizing the shape of the cluster can be generated.
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This approach leads to a smoother enclosing surface for the cluster points, which
emphasizes the global shape of the cluster, as shown in Figure 2.23 (d).

This cluster visualization technique was applied to the points of the green cluster in
Figure 2.21 (a). The distance fields were generated on a grid of size 64 × 64 × 37.
An isosurface, extracted with the standard marching-cubes algorithm [LC87] from
the distance field to the hull of the cluster points, is shown in Figure 2.24.

In the second case of multi-variate non-spatial data the data points have no reference
space, i. e. the data set represents no function but only a relation in R

m. Nevertheless,
a clustering of the data points can be computed in the same way as before. For the
visualization of a cluster it is a priori not clear which space to use, since m might
be much greater than 3. In such situations, the most common way is to project R

m

to R
3 and visualize the cluster in the projected space. For this purpose, we use a

projection utilizing optimized star coordinates [LLRR08]. After projecting the whole
data set to R

3, we are again in the above situation and can use one of the proposed
cluster visualization approaches.

We have shown, that the presented direct surface extraction techniques are also
useful for the visualization of multi-dimensional and multi-variate data. After clus-
tering the multi-variate data in feature space, the clusters can be directly visualized
by extracting and displaying segmenting or bounding surfaces for volumetric data.
In the case of multi-variate non-spatial data, the clusters are projected to R

3 and
visualized afterwards. The extracted surfaces give a good impression of the actual
shape of the clusters and allow for a presentation in the context of the whole data
set.
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(a) (b)

(c) (d)

Figure 2.23: Different visualizations of two point clusters (colored red
and blue) from the 2008 IEEE Visualization Design Contest data. The
clusters were found using density-based clustering of the multidimen-
sional feature space and were projected to a 3D visual space using a
linear projection. Additionally to the cluster points (a), three types of
enclosing surfaces are shown. (b) Isosurface extraction from distance
field computed using a 3D discrete Voronoi diagram of resolution
256× 256× 256. (c) Hull of the cluster computed from the isosurface
of the distance field. (d) Isosurface extraction from the distance field
to the hull in (c).
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Figure 2.24: Rendering of the surface isodistant to the cluster hull of
a smoothed particle hydrodynamics data set. The distance function
was generated on a 64 × 64 × 37 grid and the isosurface extracted
using the marching-cubes algorithm.
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Chapter 3

Level Sets

The direct isosurface extraction approach, described in Chapter 2, can result in
poor results for noisy data sets or in sparsely sampled areas. Data sets typically
exhibiting such characteristics are for example created by astrophysical smoothed
particle hydrodynamics simulations. Astronomical objects like stars or nebulae are
represented each by a set of particles holding several properties like temperature
or density. The behavior of the particles is simulated over time while applying in-
ner forces like pressure and gravity, but also outer forces like magnetic fields. The
simulation is performed following a Lagrangian approach where also the particle
positions in three-dimensional space change and each time step of the simulation is
represented as an unstructured point-based volume data set. Examples of data sets
with the described highly varying point density are given in Section 3.6.

The poor results of direct isosurface extraction in case of sparse sampling mainly
result from the linear interpolation of isopoints between far apart sample points or
in regions with fast changing function values. To avoid such negative effects one
would rather want to extract isopoints from functions which are nearly linear and
thus minimize errors in linear interpolation. The goal would be to find an auxiliary
function that has nearly the same isosurface as the data set but is smooth and
provides much better isopoints.

Since the direct calculation of a function fulfilling these conditions is practically
unfeasible, the application of an approximation method is useful. Such an approx-
imation method is the well-known and widely used level-set method introduced by
Osher and Sethian [OS88].

The main idea of the classical approach is to represent surfaces in three-dimensional
space as isosurfaces, the actual level sets, of an underlying scalar function, the static
level-set function ϕ̃ : R

3 → R, and reshape these surfaces by deforming the function
using partial differential equations (PDEs). Therefore, an auxiliary dimension is
introduced, an artificial time. The dynamic level-set function

ϕ : R
3 × R → R

is evolving over time with respect to the PDEs. This higher-dimensional perception
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allows easy changes of the topology of the level sets and permits a huge variety of
applications.

One standard task of the level-set method [OF03, Set99] is to deform the level sets
with respect to an outer velocity vector field V : R

3 → R
3 representing external

forces that affect the level sets. More precisely one has

∂x

∂t
= V (3.1)

for points x ∈ R
3 lying on a specified level set, i. e.

ϕ(x, t) = const .

By differentiating this equation with respect to time t and using the chain rule,
one gets

∂ϕ

∂t
+

〈

∂x

∂t
,∇ϕ

〉

= 0 .

This is the PDE modeling of the development of the level set. Together with
Equation (3.1) one gets the final level-set equation

∂ϕ

∂t
= −〈V,∇ϕ〉 , (3.2)

which describes the deformation of the level sets by the vector field V.

This basic idea of level sets is commonly applied to gridded data [BWMZ05,
MBZW02] and many variations and adaptions to different applications exist. How-
ever, none of the existing methods was able to directly operate on unstructured
point-based data sets. We present a new approach, allowing for the direct applica-
tion of the level-set method to unstructured point-based data sets without any grid
calculation or reconstruction of the scalar field. The required function properties are
directly computed from the data set and the level-set function is only processed at
the positions of the data points.

We want to explicitly distinguish between our approach and particle level-set meth-
ods [ELF04, HK05], which have been presented in recent years. Actually these meth-
ods use free particles during the Lagrangian level-set computations. However, in
contrast to our approach, particle level-set methods still require an underlying grid
or mesh to compute the process of these particles. We present an approach that
operates directly on unstructured point-based volume data.

The theoretical foundations of the described level-set-based approach are explained
in detail in Section 3.1. As one can directly see from Equation (3.2) the calculation of
derivatives of the level-set function is one key requirement of the method. Algorithms
for approximating the gradient of the level-set function and mean curvature of the
level sets have to be derived. These algorithms are presented in Sections 3.2 and 3.3.

To ensure a good behavior of the evolution process of the level-set function it has to
be kept near a signed-distance function. All considerations concerning this problem
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are presented in Section 3.4. A main aspect of the level-set approach is the evolution
of the level-set function over time and its convergence. The time discretization and
main aspects of convergence and stability of the whole process are discussed in Sec-
tion 3.5. A comprehensive overview over the achieved results is given in Section 3.6,
together with a discussion of performance and quality.

3.1 Theoretical Foundations

The main purpose of using level sets for isosurface extraction is to generate a surface
that is smooth yet close to the real isosurface. To achieve this, an approach combining
hyperbolic normal advection with mean curvature flow [GH86, Gra87, SHW05] is
preferable.

Hyperbolic normal advection [OF03] models the attraction of the zero level set to the
isosurface of the underlying scalar field in surface normal direction. More precisely
the velocity vector field V in Equation (3.2) has the same direction as the surface
normal, i. e.

V = λ · n ,

with a scalar normal velocity λ : R
3 → R. Together with the fact that

n =
∇ϕ
|∇ϕ| (3.3)

the level-set equation (3.2) becomes

∂ϕ

∂t
= −λ |∇ϕ| .

At this point the actual data set f is needed again. The level-set function should be
moved towards the scalar field f − fiso, to achieve a coincidence of the zero level set
with the isosurface to the isovalue fiso. The normal velocity λ has to be chosen in a
way that |ϕ− (f − fiso)| is minimized, i. e. by choosing

λ = ϕ− (f − fiso) .

This results in the level-set equation

∂ϕ

∂t
= (f − fiso − ϕ) |∇ϕ| . (3.4)

A second property of the surface to achieve is smoothness, i. e. minimization of the
surface area of the zero level set.

Let ϕ : R
3 → R be a differentiable function and Γ the zero level set of ϕ, i. e.

Γ :=
{

x ∈ R
3 : ϕ(x) = 0

}

.
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The surface area of Γ can be obtained by

|Γ| :=

∫

R3

δ(ϕ) |∇ϕ| dx ,

where δ denotes the one-dimensional Dirac δ-distribution [Bra00], defined by

δ(x) := lim
h→0

1

h
√
π

e−
x2

h2 for all x ∈ R .

To successively minimize the surface area of Γ, the level-set function can be processed
following the well-known model of mean curvature flow [ES91, ES92a, ES92b, ES95,
ES98]. This leads to the level-set equation

∂ϕ

∂t
= κϕ |∇ϕ| , (3.5)

where κϕ denotes the mean curvature [MBW+05, Car76] of the level set, given by

κϕ =
1

2

〈

∇, ∇ϕ
|∇ϕ|

〉

. (3.6)

Putting Equations (3.4) and (3.5) together, one gets a level-set model fulfilling both
requirements for the smooth extraction of isosurfaces. This model can be represented
by the equation

∂ϕ

∂t
= (µ (f − fiso − ϕ) + (1 − µ)κϕ) |∇ϕ| , (3.7)

where the factor µ ∈ [0, 1] controls the smoothness of the extracted surface.

3.2 Gradient Approximation

To process the level-set function ϕ following Equation (3.7), the gradient in each
sample point has to be approximated. For the regular grid case, various finite differ-
encing schemes [Bil04, Str89] exist which give very good results in short computing
time. Unfortunately, these approaches cannot directly be applied to unstructured
point-based volume data.

One possible approach to overcome this problem would be to locally interpolate the
function values to a regular finite difference scheme. For this, one could use one of
the well-known scattered data interpolation approaches and afterwards apply a finite
difference scheme of choice. However, this would introduce resampling inaccuracies
especially in regions with highly varying sample point density which are unwanted
and can grow enormously.

Instead, it is favorable to generalize these finite difference schemes to directly operate
on neighboring sample points. Such a generalization is derived in the following.
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Definition 3.1 Let f : D → R be a scalar function on D ⊂ R
m. The graph of f is

the set graph(f) ⊂ R
m+1 defined as

graph(f) := {(x, f(x)) : x ∈ D} .

Definition 3.2 Let f : D → R be a differentiable scalar function on D ⊂ R
m.

The vector nf (x) ∈ R
m+1 is uniquely defined by its direction and length through the

following two conditions.

1. nf (x) is perpendicular to the tangent hyperplane T(x,f(x))graph(f) to graph(f)
at the point (x, f(x)), i. e.

nf (x) ⊥ T(x,f(x))graph(f) .

2. The last component of nf (x) equals −1, i. e.
〈

nf (x), em+1
〉

= −1 ,

where ei, i = 1, . . . ,m+ 1 denotes the standard basis of R
m+1.

With the help of the prior definitions it is now possible to formulate a proposition,
which allows the inverse calculation of Equation (3.3). The gradient of a function
can be found just by computing the surface normal to the graph of the function.

Proposition 3.3 Let f : D → R be a differentiable scalar function on D ⊂ R
m.

Then
∇f(x) = pr

Rm (nf (x)) ,

where pr
Rm : R

m+1 → R
m denotes the orthogonal projection to the first m coordinates

and nf (x) denotes the vector introduced in Definition 3.2.

Proof. Let D ⊂ R
m, f : D → R be a differentiable scalar function, and (x, f(x)) ∈

graph(f). Furthermore let e1, . . . , em be the standard basis of R
m. The tangent

hyperplane T(x,f(x))graph(f) to the submanifold graph(f) at the point (x, f(x)) is
spanned by the vectors

vi =
d

dt

(

x + tei, f
(

x + tei
)) ∣

∣

t=0

=

(

ei,
d

dt
f
(

x + tei
) ∣

∣

t=0

)

=
(

ei,
〈

∇f, ei
〉)

=

(

ei,
∂f

∂xi

)

for i = 1, . . . ,m [KN63, KN69]. Hence, a vector v is orthogonal to T(x,f(x))graph(f),
iff

v = c (∇f,−1) for c ∈ R .

Choosing c = 1 gives the assertion immediately. �
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graph(f)

nf (x)

f ′(x)x

f

Figure 3.1: Relation between the rescaled normal to the graph and
the derivation of a one-dimensional scalar function f .

graph(f)

∇f(x)

nf (x)

x

f

T(x,f(x))graph(f)

Figure 3.2: Graph of a two-dimensional function f with tangent plane
T(x,f(x))graph(f) and gradient ∇f(x) at a point x.

One- and two-dimensional illustrations of these geometrical considerations are pre-
sented in Figures 3.1 and 3.2. From these pictures the idea of finding the gradient
by calculating the normal vector to the graph of the function becomes very clear.

The proposition above gives an easy method for approximating the gradient of the
level-set function ϕ by approximating the surface normal to the graph. The approxi-
mation of the surface normal is done using a standard least squares approach [LH95,
MN03], fitting a linear function to the k nearest neighbors [Cle79, McN01] of each
sample point.

To approximate the gradient of ϕ at the point x a three-dimensional linear func-
tion has to be fit to the k nearest neighbors of x. The ansatz for x and each of
the neighbors yi is

a1x1 + a2x2 + a3x3 + a4 = ϕ (x)

which leads to an overdetermined system of linear equations. The quadratic error
of the system is minimized if

ATAa = ATb with A =











x 1
y1 1
...

...
yk 1











, b =











ϕ (x)
ϕ (y1)

...
ϕ
(

yk
)











.

The matrix ATA is positive definite and symmetric, which allows us to use the
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Cholesky decomposition to solve the system efficiently. The procedure finally can
be subsumed by a closed formula for approximating the gradient.

Example 3.4 For a one-dimensional function ϕ : R → R, represented through the
points (x1, ϕ1), . . . , (xk, ϕk), one gets

dϕ

dx
≈
k

k
∑

i=1

xiϕi −
k
∑

i=1

xi

k
∑

i=1

ϕi

k
k
∑

i=1

x2
i −

(

k
∑

i=1

xi

)2 .

This formula is a generalization of several well-known differencing schemes. For
example, using the points (x, ϕ1) and (x + h, ϕ2) leads to the standard forward
differencing scheme

dϕ

dx
≈ ϕ2 − ϕ1

h
.

Choosing the points (x, ϕ1), (x+h, ϕ2) and (x−h, ϕ0) leads to the central differencing
scheme

dϕ

dx
≈ ϕ2 − ϕ0

2h
.

�

The closed formula for approximating the gradient of a three-dimensional scalar
function ϕ : R

3 → R can also be derived easily.

Example 3.5 Let the function ϕ be represented through the points (xi, yi, zi, ϕi)
with i = 1, . . . , k. Then the partial derivative in y-direction is approximated by

∂ϕ

∂y
≈
X1

k
∑

i=1

xiϕi +X2

k
∑

i=1

yiϕi +X3

k
∑

i=1

ziϕi +X4

k
∑

i=1

ϕi

Y
,

where

X1 =
k
∑

i=1

xiyi



k
k
∑

i=1

z2
i −

(

k
∑

i=1

zi

)2




+
k
∑

i=1

xizi

(

k
∑

i=1

yi

k
∑

i=1

zi − k
k
∑

i=1

yizi

)

+
k
∑

i=1

xi

(

k
∑

i=1

yizi

k
∑

i=1

zi −
k
∑

i=1

yi

k
∑

i=1

z2
i

)

,
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X2 =
k
∑

i=1

x2
i





(

k
∑

i=1

zi

)2

− k
k
∑

i=1

z2
i





+
k
∑

i=1

xizi

(

k
k
∑

i=1

xizi −
k
∑

i=1

xi

k
∑

i=1

zi

)

+
k
∑

i=1

xi

(

k
∑

i=1

xi

k
∑

i=1

z2
i −

k
∑

i=1

xizi

k
∑

i=1

zi

)

,

X3 =
k
∑

i=1

x2
i

(

k
k
∑

i=1

yizi −
k
∑

i=1

yi

k
∑

i=1

zi

)

+
k
∑

i=1

xiyi

(

k
∑

i=1

xi

k
∑

i=1

zi − k

k
∑

i=1

xizi

)

+
k
∑

i=1

xi

(

k
∑

i=1

xizi

k
∑

i=1

yi −
k
∑

i=1

xi

k
∑

i=1

yizi

)

,

X4 =
k
∑

i=1

x2
i

(

k
∑

i=1

yi

k
∑

i=1

z2
i −

k
∑

i=1

yizi

k
∑

i=1

zi

)

+
k
∑

i=1

xiyi

(

k
∑

i=1

xizi

k
∑

i=1

zi −
k
∑

i=1

xi

k
∑

i=1

z2
i

)

+
k
∑

i=1

xizi

(

k
∑

i=1

xi

k
∑

i=1

yizi −
k
∑

i=1

xizi

k
∑

i=1

yi

)

,
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and

Y =

(

k
∑

i=1

yizi

)2


k

k
∑

i=1

x2
i −

(

k
∑

i=1

xi

)2




+

(

k
∑

i=1

xizi

)2


k

k
∑

i=1

y2
i −

(

k
∑

i=1

yi

)2




+





(

k
∑

i=1

xiyi

)2

−
k
∑

i=1

x2
i

k
∑

i=1

y2
i







k

k
∑

i=1

z2
i −

(

k
∑

i=1

zi

)2




+
k
∑

i=1

yi

k
∑

i=1

z2
i

(

k
∑

i=1

x2
i

k
∑

i=1

yi −
k
∑

i=1

xi

k
∑

i=1

xiyi

)

+
k
∑

i=1

xi

k
∑

i=1

z2
i

(

k
∑

i=1

xi

k
∑

i=1

y2
i −

k
∑

i=1

xiyi

k
∑

i=1

yi

)

+ 2
k
∑

i=1

xi

k
∑

i=1

xizi

(

k
∑

i=1

yi

k
∑

i=1

yizi −
k
∑

i=1

y2
i

k
∑

i=1

zi

)

+ 2
k
∑

i=1

xiyi

k
∑

i=1

yizi

(

k
∑

i=1

xi

k
∑

i=1

zi − k
k
∑

i=1

xizi

)

+ 2
k
∑

i=1

yi

k
∑

i=1

zi

(

k
∑

i=1

xiyi

k
∑

i=1

xizi −
k
∑

i=1

x2
i

k
∑

i=1

yizi

)

.

Analogously, the partial derivatives in x- and z-direction can be obtained.

Just like in the one-dimensional case from Example 3.4, also the three-dimensional
gradient approximation is a generalization of several well-known grid-based finite
difference schemes. �

With the help of the considerations above, it is now possible to directly approx-
imate the gradient of a scalar field given in form of an unstructured point-based
data set and, hence, approximate the gradient terms of the level-set function in
Equation (3.7).

Lemma 3.6 The introduced least-squares gradient approach results in a consistent
gradient approximation.

Proof. For consistency, one has to verify that the approximated gradient in a point
x converges towards the real gradient if the used points converge towards x.

The proposed least-squares gradient approximation method uses the k nearest neigh-
bors to approximate the gradient at a point x. If the maximum distance of the used
neighbors converges to 0, the computed hyperplane converges, by definition, towards
the tangent hyperplane to the graph of the function. Together with Proposition 3.3,
the approximated gradient converges towards the exact gradient at x. �
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The consistency is essential for the convergence of the whole level-set process
and is obtained by using nearest neighbors for this approximation step instead of
natural neighbors, cf. Chapter 2.

3.3 Mean Curvature Approximation

The processing of the level-set function following mean curvature flow, as modeled
in Equation (3.7), requires the calculation of the mean curvature of isosurfaces at
each sample point.

As already noted in Equation (3.6), the curvature κϕ of the isosurface to a function
ϕ can be expressed as

κϕ :=
1

2

〈

∇, ∇ϕ
|∇ϕ|

〉

=
1

2

(

∂

∂x1

(∇ϕ)1

|∇ϕ| +
∂

∂x2

(∇ϕ)2

|∇ϕ| +
∂

∂x3

(∇ϕ)3

|∇ϕ|

)

.

Here and in the following (∇ϕ)i denotes the ith component of the vector-valued
function ∇ϕ. This reduces the problem of calculating a second-order derivative
to the calculation of four first-order derivatives, namely

∇ϕ , ∂

∂x1

(∇ϕ)1

|∇ϕ| ,
∂

∂x2

(∇ϕ)2

|∇ϕ| , and
∂

∂x3

(∇ϕ)3

|∇ϕ| ,

at each sample point.

The process of approximating the mean curvature at each sample point is done in
two steps. In a first step, the gradient of the level-set function ϕ, approximated using
the algorithm from Section 3.2, is stored for each of the sample points.

Then the gradient to the three functions

(∇ϕ)i

|∇ϕ| : R
3 → R , i = 1, 2, 3 ,

is approximated using again the four-dimensional least-squares approach from above.
The ith components of the gradients

∇(∇ϕ)i

|∇ϕ| : R
3 → R

3 , i = 1, 2, 3 ,

are then taken and summed up to get an approximation for the mean curvature
κϕ. Altogether the approach needs three additional gradient calculations per sample
point for the mean curvature approximation.
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Example 3.7 As one can directly see from the considerations in Example 3.4, the
method proposed here is again a generalization of several well known methods for
grid-based approximations.

For a one-dimensional function ϕ : R → R represented by the three sample points
(x− h, ϕ0), (x, ϕ1) and (x+ h, ϕ2), it leads to the standard central differencing

ϕ′′(x) ≈ ϕ0 − 2ϕ1 + ϕ2

h2

for the second order derivative. �

Because of using only multiple consistent gradient calculations, cf. Lemma 3.6,
the consistency of the proposed method is obvious.

3.4 Reinitialization

The level-set method is in general only robust and efficient if several premises are
fulfilled. One very important requirement is to keep the level-set function close to
a signed-distance function to avoid overshooting effects [GF00, Kec98, PMO+99,
SF99].

Definition 3.8 A differentiable function f : R
m → R is called a signed-distance

function to the (m− 1)-dimensional submanifold M ⊂ R
m, iff

1. f(x) = 0 ∀x ∈M and

2. |∇f(x)| = 1 ∀x ∈ R
m .

The level-set function can be easily initialized as a signed-distance function. How-
ever, the level-set process following Equation (3.7) does not assure to maintain this
property. In fact, the gradient of the level-set function is mostly diverging from a
unit vector, resulting in a significant decrease of the quality in the level-set process.

Hence, it is necessary to remodel the level-set process to maintain the signed-distance
property of the level-set function or reinitialize the level-set function to a signed-
distance function if the length of the gradient exceeds a certain threshold.

The first strategy has come up in the last years [LXGF05] and differs significantly
from the traditional approach. The introduction of an additional diffusion term,
pulling the level-set function to a signed-distance function leads to an extra speed
term in Equation (3.7), resulting in

∂ϕ

∂t
= λ div

((

1 − 1

|∇ϕ|

)

∇ϕ
)

+ (µ (f − fiso − ϕ) + (1 − µ)κϕ) |∇ϕ|

as level-set process equation. The parameter λ ∈ R
+ weights the additional reinitial-

ization term. To implement this method the calculation of an additional divergence
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term would be necessary and with it the approximation of three additional gra-
dients. The advantage of this approach is that no initial signed-distance function
is needed. By choosing a sufficiently high λ each initial differentiable function is
gradually converted to a signed-distance function.

For our implementation the traditional approach was chosen. The initial signed-
distance function is processed following Equation (3.7), destroying the signed-
distance property. After each level-set step, the norms of the level-set function gra-
dients are calculated. If any of the norms exceeds a threshold, i. e. is no longer close
to one, the function is reinitialized to a signed-distance function.

For the direct reinitialization of ϕ to a signed-distance function to the current zero
level set, the closest distance of each sample point to the zero level set would have to
be calculated [MBO94]. This is very time-consuming, especially for a high number
of sample points and complex zero level set topologies.

Instead, the method of choice is the indirect level-set-based reinitialization, as pro-
posed by Peng et al. [PMO+99]. The level-set function ϕ is processed following the
special Eikonal equation

∂ϕ

∂t
= sign(ϕ)

(

1

|∇ϕ| − 1

)

|∇ϕ|

until the process reaches steady state, i. e. until |∇ϕ| ≈ 1.

One can directly see that this process maintains the zero level set and it converges
very fast to a signed-distance function if the initial function was not far away. In
fact, it is much faster than direct reinitialization.

3.5 Time Integration and Stability

In the previous considerations of level-set processing and reinitialization, several
time evolution equations have been formulated. These are all of the general type

∂ϕ

∂t
= F (ϕ) ,

where the operator F describes how the function ϕt : R
3 → R changes over time t.

Since the function ϕ is not explicitely given, the change over time can only be calcu-
lated in discrete time steps. This raises the problem of choosing a time discretization
for updating the function from one time step to the other and the related problem
of convergence and stability of this process.

There exists a huge variety of time discretization schemes with different orders of
accuracy, convergence speed, and prerequisites. Most commonly used are the Eu-
ler method [PTVF07], the TVD-Runge-Kutta approach [Shu88, GST01], and the
WENO [JP00] and ENO schemes [OS91]. Each of these approaches can be easily
applied to the methods described above, because they do not depend on the spatial
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structure of the sample points. The time discretization chosen for the presented work
is the explicit Euler method, i. e. the level-set function is processed following

ϕt+∆t = ϕt +
∂ϕ

∂t
· ∆t . (3.8)

This choice of a first-order scheme is done for simplicity of the theoretical consid-
erations concerning also the complex spatial derivative approximation and to allow
an asynchronous update of the level-set function which is explained in Section 3.5.2.

3.5.1 Stability

One key requirement for evolution processes, as described in the previous sections, is
convergence. If a solution to the given problem exists, the evolution process should
generate a series of functions approximating the solution arbitrarily well. Without
this property the application of such evolution processes is infeasible.

The Lax-Richtmyer equivalence theorem [LR56, Str89] states that the conver-
gence of a finite difference scheme is equivalent to consistency and stability. More
precisely a discretized evolution process as in Equation (3.8) converges, iff the
following two conditions hold:

1. The approximation of derivatives is consistent. More precisely, if the step
size used for finite differences vanishes, the difference quotient converges
against the derivative.

2. The discretized evolution process is stable, i. e. small errors in the function
are not magnified during the process.

As explained in Sections 3.2 and 3.3, both introduced derivative approximation
methods are consistent. The convergence of the whole evolution process is, hence,
equivalent to its stability. Applying the finite difference schemes, derived in Sec-
tions 3.2 and 3.3, to Equation (3.8) leads to the general evolution equation

ϕi+1(x) = (E(∆t)ϕi)(x) (3.9)

for each sample x ∈ R
3. Here E is the discrete solution operator derived from the

level-set equation and the derivative approximation schemes, which is dependent on
the time step size ∆t. This operator describes how the function values of time step
t+ ∆t are derived from the values of the function at time step t.

In classical grid-based finite difference schemes the operator E is linear, i. e. a
weakly filled matrix. In the observed elementary case of the proposed method it
is very complex and highly non-linear as one can directly see from Example 3.5.

To study the stability of the time evolution of Equation (3.9), von Neumann stabil-
ity analysis [LT05, Tho98] is used. This well-known analytical tool utilizes spatial
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Fourier transforms [Bra00, DM72] to investigate if a finite difference scheme actually
allows stability and in this case to find stable time step sizes ∆t.

Von Neumann’s theorem states that the evolution process (3.9) is stable with
respect to the maximum norm, iff

∣

∣

∣Ẽ(ξ)
∣

∣

∣ ≤ 1 , for all ξ ∈ R ,

where Ẽ denotes the Fourier transform of E.

The von Neumann stability analysis is performed on a two-dimensional example.
This maintains simplicity but is complex enough to show the main problems and
results.

Example 3.9 Let a > 0 be the normal speed of a moving interface in R
2. The

corresponding level-set model of hyperbolic normal advection is described by the
level-set equation

∂ϕ

∂t
= a|∇ϕ| .

Let further (x, y) ∈ R
2 be a sample point in which the stability of the process should

be investigated. The smallest reasonable number of neighbors used for gradient ap-
proximation is two.

Without loss of generality one can assume the coordinates (x, y, ϕ1), (x, y + 1, ϕ2),
and (x+ ∆x, y + ∆y, ϕ3) for the observed point and its two neighbors. In this case,
a series of standard calculations [LT05, Tho98], applied to von Neumann’s theorem
leads to the following conditions on ∆x, ∆y, and ∆t assuring stability

λy − ∆y
λx

∆x
≤ 1

∆t
(3.10)

(

(1 − ∆y)
λx

∆x
+ λy

)

≤ 1

∆t
(3.11)

λx

∆x
≥ 0 (3.12)

λx

∆x
≤ λy

∆y
, (3.13)

with

λx =
a

|∇ϕ|
∂ϕ

∂x
and λy =

a

|∇ϕ|
∂ϕ

∂y
.

It is obvious that Inequalities (3.10) and (3.11) can be maintained by choosing a
small enough time step ∆t, so they give only restrictions in the time dimension. Con-
trary to this, the last two conditions affect the relation between partial derivatives
of ϕ and ∆x, ∆y.

Inequality (3.12) represents a concept well-known from classical level sets [OF03]
called upwinding. It states that information should always propagate in the same
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(x+ ∆x, y + ∆y)
(x, y + 1)

(x, y) γ1

γ2

Figure 3.3: Illustration of the restriction to the position of the third
sample point to allow stability of the level-set process. If the gradient
in the point (x, y) is approximated with the help of the two points
(x, y+1) and (x+∆x, y+∆y), the process is only stable if the point
(x+∆x, y+∆y) lies in the sector between the lines γ1 and γ2, where
γ1 is parallel to the x-axis and γ2 has slope λy

λx
.

direction as indicated by the waves of the level-set function. In our case this means
that ∆x and λx should always have the same sign.

Very similar but even more restrictive is Inequality (3.13). Together with Inequal-
ity (3.12) it ensures the upwinding in y-direction. Additionally it constitutes a rela-
tion between the ratio of both partial derivatives of ϕ and the ratio of ∆x and ∆y.
More precisely it states that the point (x + ∆x, y + ∆y) should always lie in the
sector spanned by the line through (x, y) parallel to the x-axis and the line through
(x, y) with slope λy

λx
, as illustrated by Figure 3.3.

Altogether one can see that the proposed gradient approximation method allows
stable time steps for the observed example. Therefore the sample points, used for
the approximation of the gradient, have to have a specific upwind-like position.
In this case, the biggest stable time step is explicitely given by Inequalities (3.10)
and (3.11). �

As mentioned in Examples 3.4 and 3.5, the proposed gradient approximation
method is a generalization of several well-known grid-based finite difference
schemes. Hence, it is hardly surprising that the considerations in Example 3.9
lead to a generalization of the results of stability analysis for grid-based methods.
Instead of allowing only axis aligned upwinding, it is possible to have the used
sample points lying in a sector dependent on the partial derivatives of the level-set
function.

All previous considerations can be easily extended to three dimensions. There it
is possible to find similar regions of stability and in this case give restrictions to
stable time steps.

Observing the previous considerations it is possible to ensure a stable process of the
level-set function following normal advection by choosing appropriate neighbors and
a small enough time step. However, this theoretical approach is not used in practice.
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When practically solving the level-set equation for smooth isosurface extraction (3.7)
it has turned out beneficial to use a much higher number of sample points for a very
good approximation of spatial derivatives. The use of 26 nearest neighbors is also
much more robust against the highly varying sample point density of some of the
processed data sets. This procedure never ran into stability problems in practice
when choosing small enough time steps ∆t.

To derive an estimate for a time step ∆t the considerations by Osher and Fed-
kiw [OF03] are adapted to the proposed method. The authors state a Courant-
Friedrichs-Lewy-condition [CFL28, CFL67] necessary for the stability of the grid-
based level-set method. The idea of the CFL-condition is to give a time step which
allows stability by restricting the numerical domain of dependence of the finite
difference scheme to the physical domain of dependence.

In fact, this condition is not sufficient for stability but is commonly used in prac-
tice. The adopted CFL-condition for Equation (3.7) becomes

µ |f − fiso − ϕ|
dmin|∇ϕ|

(∣

∣

∣

∣

∂ϕ

∂x1

∣

∣

∣

∣

+

∣

∣

∣

∣

∂ϕ

∂x2

∣

∣

∣

∣

+

∣

∣

∣

∣

∂ϕ

∂x3

∣

∣

∣

∣

)

+
6(1 − µ)

d2
min

<
1

∆t
,

where dmin denotes the Euclidian distance to the nearest used neighbor, i. e. the
radius of the minimal numerical domain of dependence.

Although there is no evidence that this CFL-condition ensures stability, the proposed
level-set method can be carried out with time steps allowing stability in principle.
This approach worked out very well for all practical cases considered. Indications
for this and results from the procedure are shown in Section 3.6.

3.5.2 Asynchronous Time Integration

The considerations from Section 3.5.1 give a practicable time step to use, at least
allowing stability for the process. However, all these observations are done in a fixed
sample point at a certain point in time. To apply a global time step for all sample
points, it is bounded by the most restrictive CFL-condition of all points of the data
set. Thus, if the sample points have a highly varying distribution or if the underlying
scalar field has big local variations, time steps for all points may be bounded by the
rather restrictive stability condition of a few points. This behavior can dramatically
slow down the whole level-set process.

To alleviate this potential drawback, one can use asynchronous time integration.
Here, like in global time integration, all sample points start at the same point in
time t0. Then for each sample point one time step is computed, only bounded by
the local stability condition. Most of the sample points are asynchronous afterwards,
i. e. they have different time coordinates t.

To continue the level-set process for this asynchronous setting, a time line is intro-
duced starting at t0 and moving in positive time direction. Each sample point the
time line reaches is again processed following the level-set equation with the local
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bounded time step. To compute the next step for the actual sample point and ap-
proximate its derivatives, also function values of the neighboring points are needed.
However, as the time line always proceeds in positive time direction the neighboring
sample points are only equipped with their future function values.

To overcome this problem a local synchrony has to be generated. This can be
achieved by using the applied Euler time integration. By storing for each sample
point not only its current value and point in time but also the previous one, the
function values to each point in time in between can be reconstructed by linear
interpolation. This allows the approximation of gradients along the time line and
with it the processing of the visited points.

xt0+∆t

xt0
t0

t

(a)
t

t0

xt0+∆t

(b)

Figure 3.4: Asynchronous time integration of one-dimensional sample
points. At the beginning of the process all sample points have the
same evolution time t0. After processing each point with its individual
time step ∆t, the sample points are asynchronous, as shown in (a). To
process the asynchronous points, a time line is moving through time
always proceeding with the point with the smallest time coordinate.
The needed function values of neighboring points are obtained by
linear interpolation with respect to the time, as illustrated in (b).

The asynchronous time integration process is illustrated in Figure 3.4. After having
computed the first time step, the time line is set to the earliest subsequent point in
time. The function values of the neighbors are linearly interpolated at this point in
time. This interpolation is always possible, since always the earliest point in time
is updated and all other points have values stored for a future point in time and
a past point in time with respect to the current time line. With the interpolated
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properties, the level-set function at the current sample point is integrated in time
with the local time step restriction and the time line proceeds to the next point in
time.

A detailed discussion of assets and drawbacks of the asynchronous time integration
in comparison to the global time integration is given in the following section. There
a detailed discussion of the usability with respect to actual data sets is given.

3.6 Results and Discussion

The presented level-set method was applied to a variety of different data sets. All
experiments were performed on a single 2.66GHz Intel Xeon processor. To investigate
the scalability of the approach it was first applied to a data set with different levels
of detail. Therefore the regular Hydrogen data set was resampled at random sample
positions and the function values were obtained by trilinear interpolation.

An illustration of the level-set process for the Hydrogen data set with four million
sample points is shown in Figure 3.5. For each step of the level-set process, the zero
level set was extracted. One can easily see how the topology of the zero level set
changes and how smooth it converges against the desired isosurface.

# samples kd-tree generation NN-calculation
500k 0.7 sec 23 sec

1,000k 1.9 sec 50 sec
2,000k 4.1 sec 111 sec
4,000k 9.0 sec 239 sec

Table 3.1: Computation times for the preprocessing of the Hydrogen
data set with different sample quantities. The preprocessing includes
the generation of the kd-tree and nearest neighbor (NN) calculation.

The performance of the preprocessing of the proposed level-set method is shown
in Table 3.1. There the computation times for the kd-tree generation and for the
computation of the 26 nearest neighbors are compared for different data set sizes.
As expected the generation of the kd-tree as well as the nearest-neighbor calculation
can be performed in O(n log n) time. As just a simple approach was implemented,
the performance of the nearest-neighbor calculation could be surely improved by
using more sophisticated algorithms.

As a second item of measurements, the computation times for the extraction of
the zero level set were investigated. The level-set method was again applied to the
Hydrogen data set, resampled with different sample quantities. After convergence
of the level-set process, the zero level set was extracted using kd-tree-based direct
surface extraction, as described in Chapter 2. The computation times are given in
Table 3.2.

The neighborhood generation has a complexity of O(n log n), but is significantly
faster than the calculation of the 26 nearest neighbors in Table 3.1. According to
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Step 0 Step 1 Step 2

Step 3 Step 4 Step 5

Step 6 Step 7 Step 8

Figure 3.5: Splat-based ray tracing of the zero level sets generated
during the level-set process. The level-set method was applied to the
Hydrogen data set with four million randomly distributed sample
points. The whole level-set process including preprocessing and ex-
traction of the zero level set took 22 minutes. (Data set courtesy
of Peter Fassbinder and Wolfgang Schweizer, SFB 382 University
Tübingen.)
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# samples # isopoints neighborhood point extr.
500k 7k 0.8 sec 0.5 sec

1,000k 12k 1.7 sec 1.1 sec
2,000k 18k 4.1 sec 1.9 sec
4,000k 29k 10.1 sec 2.6 sec

Table 3.2: Times for the extraction of the zero level set for the hy-
drogen data set in different levels of detail. The number of extracted
surface points and the computation times for the neighborhood com-
putation as well as the isopoint extraction are shown. The zero level
set was extracted after convergence of the level-set process.

this it is possible to follow the whole level-set process during runtime with just a
little more computational effort.

level-set process reinitialization
synchr. int. 59k samples/sec 88k samples/sec

asynchr. int. 2k samples/sec 46k samples/sec

Table 3.3: Computation times comparison for the level-set as well as
the reinitialization process with synchronous and asynchronous time
integration. The times are specified in processed sample points per
second.

To judge the computation times for the level-set process and the reinitialization
is very difficult, since they heavily depend on the data set. For both synchronous
and asynchronous time integration, it is possible to construct example data sets
with arbitrarily long computation times due to sample points with nearly unstable
behavior. That is why the computation times for this step are given in processed
sample points per second, as presented in Table 3.3.

It is clearly visible that the asynchronous time integration heavily slows down the
rate for the level-set process. This is mainly due to the fact that second derivatives
have to be calculated. In the synchronous time integration this step uses the already
calculated first derivatives, which are not available in the asynchronous approach.
Hence, it can be very crucial for the overall computation time to choose the right
approach for a data set. In terms of quality both time integration strategies are
equal, as all performed experiments showed.

To show the practicability of the presented level-set approach, it was applied to a
series of unstructured data sets coming from real applications. In this case, the data
sets are time steps from astrophysical smoothed particle hydrodynamics simulations,
provided by Stephan Rosswog from Jacobs University in Bremen. Each sample point
holds a vector of different scalar values like density, temperature, and chemical mass
fractions at this position.

First the smooth isosurface extraction pipeline is shown with the help of a SPH sim-
ulation data set with seven million unstructured sample points. In the simulations,
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(a) (b) (c)

Figure 3.6: Smooth isosurface extraction pipeline in practice for an
astrophysical SPH data set. The seven million unstructured sample
points are rendered in (a) with colors related to their function values.
After convergence of the level-set process the points on the zero level
set are extracted, as shown in (b). The final rendering of the zero
level set using splat-based ray tracing is visualized in (c).

the set of particles represents a white dwarf, i. e. a small and very dense star corpse.
The white dwarf encounters a massive black hole and is torn apart. This results
in drastically varying particle number densities, as shown in Figure 3.6 (a). In this
image, some very far outlying particles in the very sparse lower right corner are even
not drawn. The local point densities in these data sets can range over more than
three orders of magnitude. After convergence of the level-set process, the extracted
points on the zero level set are shown in Figure 3.6 (b). The final rendering of the
zero level set can be seen in Figure 3.6 (c).

Two different isosurfaces have been extracted with respect to the density scalar field
from another white dwarf data set with 500,000 sample points. The smooth isosur-
faces obtained by using the asynchronous level-set approach are shown in Figure 3.7.
The whole process for generating both isosurfaces lasted 68 minutes. Using the syn-
chronous approach would have been not feasible, since the very small time steps in
this data set are mainly bound by at most 20 sample points, leading to several hours
of computation time.

On the same data set the quality of the level-set approach compared to direct iso-
surface extraction was investigated. A side-by-side comparison for the same isovalue
of the density field is shown in Figure 3.8. The isopoints are rendered as small discs,
which directly reveal the much higher quality and accuracy of the isosurface ex-
tracted by the level-set approach. A close-up view shows some far outliers for the
direct isosurface extraction, which result from the highly varying point density of
the data set.

Finally, we tested our presented derivative approximation methods in terms of ac-
curacy. We applied our method to synthetic unstructured point-based data sets
representing several three-dimensional test functions, including polynomials and ra-
tional functions up to order five and trigonometric functions. The data sets consist
of one million sample points randomly distributed within [0, 100]× [0, 100]× [0, 100].
The approximated derivatives, as well as derivatives obtained by central differenc-
ing, were compared to the real analytic derivatives. The approximated gradients
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ρ = 40g/cm3 ρ = 100g/cm3

Figure 3.7: Splat-based rendering of two different isosurfaces of the
500k white dwarf simulation data set. The underlying scalar field
represents the density in space. Smooth isosurfaces were extracted
for two different densities using asynchronous time integration.
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Figure 3.8: Comparison between direct isosurface extraction on the
left side and smooth isosurface extraction using level sets on the right
side for the 500k white dwarf simulation data set. To illustrate the
significant advantage of the level-set approach over direct isosurface
extraction, a close-up view on the surface and a rendering of the
surface points with very small splats is shown.
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were computed with the 26 nearest neighbors of each sample point. For central dif-
ferencing the needed sample points were computed from the given sample points
by stepping in the direction of the axes with step size 1. The function values at
these points were taken from the analytical function, not by using scattered data
interpolation. For each data point, the relative error δ between exact gradient ∇ϕ
and approximated gradient ∇̃ϕ was computed by

δ =

∣

∣

∣∇ϕ− ∇̃ϕ
∣

∣

∣

|∇ϕ| .

The average relative error was calculated by computing the arithmetic average of
the relative errors at the data points.

When using polynomial test functions, the average relative errors of central differ-
encing and our approximation method are equal. Depending on the order of the
polynomial the average relative error is between 2 · 10−7 and 9 · 10−7. When dealing
with rational and trigonometric functions, the errors may differ. The average rela-
tive error for central differencing lies between 1 · 10−5 and 4 · 10−5, while the average
relative error for our approximation method ranges from 2 ·10−5 to 13 ·10−5. Hence,
the proposed gradient approximation technique is close to standard techniques in
terms of accuracy and well suited for derivative approximations from unstructured
point-based volume data.

We have presented a level-set approach, which is the first one directly able to be
applied to unstructured point-based volume data. Since no competitive techniques
exist, we consider approaches with similar intention. Museth et al. [MBZW02] pro-
pose a method for applying level sets to multiple non-uniform data sets, which consist
of unions of rectangular grids. Our results are comparable in terms of quality with
the ones presented there. Additionally it would be easy to process the non-uniform
data used there with our approach. Unfortunately, the authors state no computation
times for their examples.

State-of-the-art level-set approaches for regular grids are able to process up to one
million grid points per second [MBNM07], which would be one order of magnitude
faster than our approach for unstructured point-based data. However, the interpo-
lation of the data to a hexahedral grid is no option for highly varying data sets, due
to the introduced interpolation errors.
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Chapter 4

Point-cloud Rendering

The second step of a visualization pipeline after preprocessing and transforming the
data is mostly the rendering of generated virtual models. This is a very crucial part,
since the preprocessed data has to be visualized on the screen or any other output
device in a way that users can easily see important properties and features of the
data.

The results of the first part of the presented visualization pipeline for unstructured
point-based volume data are surfaces in point-cloud representation. These surfaces
represent isosurfaces with specific properties of the underlying scalar field. Since no
connectivity information is available for the surface points and it would be unfeasible
to obtain it during isopoint extraction, standard rendering techniques using meshes
are not directly applicable.

Nowadays, different point-based rendering approaches exist [AGP+04, LP01,
PZvBG00, RL00, SPL04]. The most prominent ones are based on the local ap-
proximation of the surface by fitting planes or polynomial surfaces to a subset of
neighboring points [ABCO+01]. Technically, these are still (local) surface reconstruc-
tions. However, the steps for extracting the surface points are mainly point-based
without reconstruction of fields or structures. So it is also preferable to not recon-
struct the surface from the surface points but use a point-cloud rendering.

Whatever method for rendering is used, the knowledge of surface normals at least
at the surface points is essential to facilitate shading. From the surface extraction
techniques, described in the previous chapters, only an orientation vector is given
for each surface point. A surface normal at each point is approximated in a prepro-
cessing step using an approach based on principal component analysis. A detailed
description of this step is given in Section 4.1.

For the actual rendering step, two choices are presented. If a photorealistic rendering
with global illumination and effects like shadows, reflections, or transparency is
desired a splat-based ray tracing approach is used [LMR07]. Since many results are
rendered using this method, it is explained briefly in Section 4.2.

For the direct rendering of point clouds without any precomputations an image-space
point-cloud rendering method is proposed [RL08a]. The approach, explained in de-

CHAPTER 4. POINT-CLOUD RENDERING



64 4.1. SURFACE NORMAL APPROXIMATION

tail in Section 4.3, uses image-space operations and filters to compute high-quality
renderings. By using today’s graphics card capabilities this approach achieves inter-
active frame rates. A number of experiments and examples and a detailed discussion
of both approaches are given in Section 4.4.

4.1 Surface Normal Approximation

In the previous chapters, a series of different surface extraction techniques for un-
structured point-based volume data is proposed. The results of all approaches are
surfaces in point-cloud representation. More precisely the surfaces are represented
by a set of volumetric points lying on the surface without any connectivity or neigh-
borhood information. The rendering of such point clouds requires at least additional
knowledge about surface normals at the surface points to allow shading. However,
the presented approaches are not able to provide these. The only additional informa-
tion besides the position of the surface point in three-dimensional space is a vector
giving an orientation of the surface.

To obtain the desired surface normals a standard approximation approach [PKG03]
using principal component analysis [FP02] is chosen. Although this strategy was
proven to be not the best in terms of accuracy by Alexa et al. [AA04], it is very fast
and gives good results.

For each surface point x ∈ R
3, a number of surrounding surface points have to be

found. Typically, n nearest neighbors x1, . . . ,xn ∈ R
3 are chosen. In the presented

approach, a number of n = 30 nearest neighbors produced always good results and
was fast to compute with the help of a three-dimensional kd-tree. Afterwards the
centroid x̄ has to be calculated from the set {x,x1, . . . ,xn}, i. e.

x̄ :=
1

n+ 1

(

x +
n
∑

i=1

xi

)

.

A principal component analysis of this set with respect to the centroid is done
calculating first the matrix of difference vectors

A :=











x − x̄

x1 − x̄
...

xk − x̄











.

The respective covariance matrix C := ATA is positive semidefinite and symmetric.
Thus, all eigenvalues, which are used for principal component analysis, are real and
greater or equal than zero. The eigenvalues λi are calculated using the standard
approach, solving

det (C − λI) = 0 ,

where I denotes the identity matrix. This leads to an equation with a polynomial
of degree three. The roots λi of this polynomial can be explicitely calculated by
Cardano’s formula [Dun91].
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The eigenvectors of C are orthogonal to each other. The eigenvector to the largest
eigenvalue gives the direction with the biggest extension of the point set. The
eigenvector to the second largest eigenvalue gives the orthogonal direction with
the second biggest extension of the point set and so on. The eigenvector to the
smallest eigenvalue gives, consequently, the direction perpendicular to the largest
extensions of the point set.

Since all points lie on one surface the eigenvector to the smallest eigenvalue is a good
approximation for the normal vector to the surface. If λ̃ is the smallest eigenvalue
of C, an associated eigenvector v ∈ R

3 can be calculated by finding a nontrivial
solution of

(

C − λ̃I
)

v = 0 .

This eigenvector is afterwards normalized and oriented with respect to the given
surface orientation to obtain the approximated surface normal.

The used approximation method gives very good results in short computation times,
especially for big sets of surface points. A comprehensive analysis of the computation
times and results are presented in Section 4.4. Even though the chosen approach for
approximating the surface normals can give results of lower quality in some special
cases, it has worked out very well for the purposes pursued here.

From now on we can assume that the surface Γ to be rendered is given in a
point-cloud representation Γ̃ with associated normals, i. e.

Γ̃ :=
{

(xi,ni) ∈ Γ × Txi
Γ⊥ : ‖ni‖ = 1

}

,

where Txi
Γ⊥ denotes the orthogonal complement to the tangent plane Txi

Γ to the
surface Γ at point xi.

4.2 Splat-based Ray Tracing

Ray tracing is a well-known and widely used rendering technique in computer graph-
ics. It allows for precise shadow computations and modeling of light reflection and
refraction. The original idea [App68, Whi80] of ray tracing of triangular meshes has
a long tradition in photorealistic rendering and is described in any computer graph-
ics textbook, e. g. [Wat00]. For each pixel of the screen a ray is shot from the view
point through the center of the pixel and traced through the scene. The color of the
pixel is calculated with respect to the properties of possibly hit surfaces and light
sources.

With the upcoming of precise high-resolution 3D laser scanning techniques, point
clouds have gained major interest in the computer graphics society. Several well-
known rendering techniques have been remodeled to be applicable to surfaces in
point-cloud representation. This is also the case for ray tracing. Schaufler and
Jensen [SJ00] were the first to propose a ray-tracing technique for point clouds
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based on the idea of sending out rays with a certain width which can geometri-
cally be described as cylinders. This approach does not handle varying point density
within the point cloud. Moreover, the surface generation is view-dependent, which
may lead to artifacts during animations. Wand and Straßer [WS03] introduced a
similar concept by replacing the cylinders with cones.

Adamson and Alexa [AA03] proposed a method for ray tracing point set surfaces.
For the intersection of the rays with the locally reconstructed surfaces, points on
the ray are iteratively projected onto the surface until the procedure converges,
which is computationally very intense. An interactive ray tracing algorithm of point-
based models was introduced by Wald and Seidel [WS05]. They propose a splat-
based hybrid approach which uses ray tracing for shadow computation. The actual
shading is performed using local shading models. Thus, transparency and mirroring
reflections are not modeled.

The approach presented in the following, allows for the generation of such ray-
tracing-specific properties. It is divided into two steps. The first step is based on the
ideas of surface splatting [ZPvBG01] and described in Section 4.2.1. For each surface
point with surface normal a radial expansion tangential to the surface is computed.
These generated discs are called splats. They are supposed to overlap in order to
cover the entire surface. Furthermore a local normal field has to be computed per
splat depending on the local curvature to achieve a smooth looking surface.

The actual ray-tracing step is executed by sending out rays that intersect the splats,
potentially being reflected or refracted. Surface normals are interpolated from the
normal fields and between splats, where they overlap. An octree is used to improve
the computation times and minimize the ray-splat intersection calculations. A more
detailed description of this step is given in Section 4.2.2. Since the splat generation
is view-independent, it can be carried out as a preprocessing step. For animations
only the ray-tracing step has to be done per animation frame.

4.2.1 Splat Generation

Let P be a point cloud consisting of n points with normals (p1,n1) , . . . , (pn,nn) ∈
R

3 × R
3. A set of m splats S1, . . . , Sm has to be generated that covers the entire

surface represented by the point cloud P . For each of these splats its radius ri ∈ R,
i = 1, . . . ,m, and a normal field ni(u, v), i = 1, . . . ,m has to be calculated, where
(u, v) ∈ [−1, 1] × [−1, 1] with u2 + v2 ≤ 1 describes a local parameterization of the
splat.

The radii of the splats should vary with respect to the curvature of the surface
covered by the splat. In regions of high curvature, a piece-wise constant surface
representation via splats requires us to use many splats with small radii to stay
within a predefined error bound. The error for a surface point is measured as the
distance perpendicular to the splat’s plane.

The algorithm for generating the splats with respective normal fields goes sequen-
tially through the list of surface points. Through each non-visited surface point p
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n

p

c
δ

S

Figure 4.1: Generation of the splat S for the point p in side view.
The splat is grown in a plane perpendicular to the normal n as long
as the distance to the covered points, colored green, stays in a given
threshold δ. Afterwards the center point c of the splat is set in a
way that the maximum distance of the covered points to the splat is
minimized.

a plane is fit perpendicular to the surface normal. The neighboring surface points
are sorted with respect to their Euclidean distances to p. Next, a splat S lying in
the plane and centered at p is grown iteratively as long as it only covers neighbors
within the given error bound δ. At each iteration step, the radius of the splat is
increased, such that it covers one additional neighbor of p. The normal of the splat
remains unchanged, but the center c is moved along the surface normal n such that
the splat position minimizes its maximal distance to all so far covered points. After
the iteration stops, the maximum radius is saved for the splat and its midpoint c is
set to minimize the maximum distance of the splat to all covered surface points. The
process of generating the splat for one surface point p with normal n is illustrated
in Figure 4.1.

After each generation of a splat for a surface point p a number of other surface points
is covered by the splat of p. From these points not all have to be still considered
for splat generation. The amount of splats needed to cover the surface represented
by the point cloud P depends on the chosen error bound. Which splats to generate
and how many is a non-trivial task [WK04]. Here a simple heuristic based on the
relative distances to the splats’ centers is used.

If a splat with radius r is generated starting from the point p, then no splats need
to be generated starting from neighboring points within the projected distance λ · r
from the splat’s center c. Here λ ∈ [0, 1] is the factor that defines the percentage of
the splat’s radius used for the criterion. It is defined globally for P , which is possible
as it is multiplied with the locally varying radius r. A good choice for λ is a value
such that the generated splats cover the entire surface and have low overlap, which
is very tough to guarantee. The parameter choice for a data set depends on the
variance of the local curvature in combination with the variance of the local point
density. However, in most of the experiments and all shown pictures in Section 4.4,
a choice of λ = 0.2 gave very good results.

In order to generate a smooth-looking visualization of a piecewise linear surface,
the normals have to be smoothly interpolated over the surface before applying the
light and shading model. This is done by generating a linearly changing normal field
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within each splat, cf. [BSK04].

n

p

S c

Figure 4.2: Generation of linear normal field (green) over the splat S
from the normals of the points covered by the splat. The normal field
is generated using local parameters (u, v) ∈ [−1, 1]2 over the splat’s
surface. The normal at (0, 0) may differ from n.

Let S = (c,n, r) be a splat generated as described above. For the definition of
the normal field over S, the splat is parameterized locally using two vectors u,v ∈
R

3 with u ⊥ n and v = n × u. Moreover, let ‖u‖ = ‖v‖ = r, i. e. the local
parameterization of the splat is given by

(u, v) 7→ c + u · u + v · v

with (u, v) ∈ R
2 and u2 + v2 ≤ 1. Using this local parameterization, a linearly

changing normal field n(u, v) can be defined by

n(u, v) = n + u · λu · u + v · λv · v , (4.1)

with parameters λu, λv ∈ R. These parameters have to be chosen to fit the normals
of the covered surface points as close as possible. An illustration of the idea is given
in Figure 4.2.

The factors λu and λv are approximated by a least-squares fitting approach. The
normal and position of each covered surface point is projected onto the splat. With
the help of its local coordinates Equation (4.1) is formed leading to a system of linear
equations with unknown variables λu and λv for all covered points. This system is
overdetermined and a solution can be approximated in the least-squares sense. To
allow more flexibility also the normal n in c is set to be unknown.

Splat and normal field generation are done in a preprocessing step. For each splat
only the center point c, the center normal n, the local parameterization vectors u

and v, and the normal field parameters λu and λv have to be stored. The actual
point cloud is not needed any further.

4.2.2 Ray Tracing

The input of the ray-tracing procedure are the splats S1, . . . , Sm, each given by its
center ci, its radius ri, and its normal field parameters. The ray-tracing method sends
out primary rays from the camera position through the center of each pixel of the re-
sulting image onto the scene. The intersections of the primary rays with the surfaces
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are computed using ray-splat intersections. From these intersection secondary rays,
i. e. shadow rays, reflection rays, or refraction rays, are sent out depending on the
surface properties. In the latter two cases, the rays are treated equally to primary
rays and traced recursively until the ray-trace depth is reached. The results of the
ray computations are combined using the Blinn-Phong lighting model [Bli77].

In order to process computations of ray-splat intersections efficiently, an octree is
used for storing the splats. The generation of this octree and the insertion of the
splats is done in two steps.

The first step is the dynamic phase, where the actual octree is generated using
a standard approach [Sam06]. Starting with an empty octree that describes the
bounding box of the entire scene, each splat’s center point is inserted iteratively in
the respective leaf of the octree. As soon as a leaf of the octree contains more points
than a given threshold, it gets split into eight equally sized subcells. The points are
inserted into the new leaves with respect to their positions in space. The iteration
stops once all splat center points have been inserted.

c

S

Figure 4.3: Insertion of splats into the octree. In a first step, the octree
is built by just inserting the midpoint c of each splat. In a second
step, the structure of the octree remains unaffected. Each splat S is,
additionally to the cell of its midpoint (green cell), inserted into all
cells it intersects (yellow cells).

In the second step, splats are inserted into further cells of the octree but its shape
remains static, i. e. no further cell subdivisions are executed. These additional splat
insertions are necessary, as splats have an expansion and may stretch over various
cells. Thus, splats have to be additionally inserted into all leaf cells they intersect,
as illustrated by Figure 4.3.

Since an exact cell-splat intersection is computationally rather expensive, a nested
test for potentially intersecting cells is done for each splat S. The first test checks
which cells intersect the bounding box with length 2 · r centered at the center point
c of the splat. For all leaf cells, for which the first test was positive, a second test
based on the local parameterization of the splat is done. The cells are checked for
intersections with the bounding square of the splat, spanned by the local parame-
terization vectors u and v. If a cell passes both tests, the splat is inserted into it.
This nested test is very fast and each splat is only stored slightly more often than
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necessary. After the whole process, each splat is recorded in all leaves of the octree
which cells it intersects.

x2

x1

c2

c1

S1

S2

Figure 4.4: Intersection of rays with splats. The ray intersects both
splats S1 and S2 in the points x1 and x2 respectively. x2 is chosen as
intersection point since the relative distance to its splat’s center c2 is
the smallest one.

The actual intersection of rays with splats is computed using the octree partitioning
of the three-dimensional scene. The primary rays are traced through the octree.
For all visited cells the respective splats are checked for intersections with the ray
until at least one splat is hit or the ray leaves the octree. If a ray intersects multiple
splats within an octree cell, the intersection point with the smallest relative distance
from the respective splat center is chosen, see Figure 4.4. For this intersection point
the shading, reflection, and refraction model is applied, possibly using recursion, to
compute the color.

For the intersection point a local normal is needed to apply the Blinn-Phong lighting
model and to compute the directions of the reflected or refracted rays. Just using
the normal field of the hit splat would necessarily lead to normal discontinuities
between overlapping splats. To avoid the discontinuity, the normals of overlapping
splats are averaged. Let S1, . . . , Sp be all splats that are hit by a ray within a small
environment around the intersection point x. Moreover, let (u1, v1), . . . , (up, vp) be
the local coordinates of the ray intersection points and let n1, . . . ,np be the normals
at these points obtained by the normal fields. Then the normal n at x is computed
as

n =

p
∑

i=1

(1 − ‖(ui, vi)‖2) · ni

p
∑

i=1

(1 − ‖(ui, vi)‖2)

.

This averaging leads to continuously varying normals on the whole surface.

With this approach it is possible to produce high-quality and photorealistic images
of surfaces in point-cloud representation. The linear normal fields on the splats and
averaging between splats leads to smooth-looking surfaces although the splats only
provide a piecewise linear surface representation even without C0-continuity.
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4.3 Image-space Point-cloud Rendering

A very different approach from the one presented in Section 4.2 will be explained
now. Instead of generating photorealistic renderings with the help of expensive and
complex computations, we propose an interactive yet smooth surface rendering with-
out precomputations in object space. The approach goes back to the original ideas
of Grossman and Dally [GD98] of directly rendering points instead of surface parts
surrounding the points and carrying out all processing steps in image space.

The basic idea comes from the observation that the growing sizes of point clouds
result in permanently growing point-per-pixel ratios for the rendered images. Conse-
quently, sizes of rendering primitives go down to subpixel level and the use of points
as rendering primitives gets feasible. However, also with high point-per-pixel ratios
it might happen that some pixels of the rendered image exhibit incorrect informa-
tion such as background color or occluded surface parts. These pixels should be
corrected in image space. The pipeline of our proposed rendering technique is shown
in Figure 4.5. It assumes that the point-per-pixel ratio is sufficiently high such that
neighboring points on the surface are mapped to pixels that are not more than two
pixels apart. This assumption is typically fulfilled when dealing with the densely
sampled data sets we are commonly facing nowadays (up to a common zooming
level).

Point Cloud

Point Rendering

Filling Background Pixels

Filling Occluded Pixels

Smoothing

Anti-aliasing

Illustrative Rendering

Anti-aliasedSmooth
Surface

Rendering
Surface

Rendering
Surface

Rendering

Illustrative

Figure 4.5: Process pipeline for image-space point-cloud rendering.
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Starting from a point cloud including normals, the lit point cloud is rendered to a
texture with color, depth, and normal information. This projection to image space
is described in Section 4.3.1. Subsequently several filter operations are applied to
image space.

In a second and a third step, possible holes in the projected surface are filled, see Sec-
tion 4.3.2. These are holes that incorrectly exhibit background information or holes
that exhibit occluded surface parts. The resulting piecewise constant surface repre-
sentation does not exhibit holes anymore and is smoothed by a standard smoothing
filter to generate smoothly varying color shades, see Section 4.3.3. This results in
the desired smooth surface rendering.

Additionally the same steps can also be applied to the depth channel such that a
subsequent edge detection filtering leads to a texture that exhibits the silhouettes
and feature lines of the surface. This additional texture offers the opportunity of
anti-aliasing the silhouettes, see Section 4.3.4, or performing illustrative rendering
techniques like silhouette rendering, see Section 4.3.5.

Since all operations are performed in image space, they are implemented to operate
on GPUs of today’s graphics cards. Exploiting the capabilities of modern GPUs in
terms of speed and parallelism, this allows the displaying of point clouds with large
numbers of points at interactive rates and without any precomputations.

4.3.1 Point Rendering

All processing steps of the proposed rendering pipeline for point clouds are performed
in image (or screen) space. Consequently, the first processing step is to project the
point cloud Γ̃ into image space. Before projecting the points, they are lit using the
local Blinn-Phong illumination model with ambient, diffuse, and specular lighting.
The illuminated points are projected onto the screen using perspective projection.

During projection backface culling as well as depth buffering is applied. The backface
culling is performed by discarding back-facing points (xi,ni) with respect to the view
point, i. e. those with 〈ni,xv − xi〉 < 0, where xv denotes the position of the viewer.
These surface points can be discarded since they will not contribute to the final
image.

The depth test is performed by using the OpenGL depth buffering. If two points are
projected to the same pixel, the one closer to the viewer is considered. The colors of
the projected points are stored in an RGBA color texture using the RGB channels
only. Figure 4.6 shows the resulting texture for the skeleton hand data set consisting
of 327,000 points.

Besides color and position in image space, the depth of each projected point, i. e. the
distance of the represented point xi to the viewer’s position xv, is required for the
subsequent pixel filling steps. However, the depth value calculated during the depth
test cannot be used, since it is not linear in the distance d of the point to the viewer.
Actually it is given by

f(d) :=
(d− znear) zfar

(zfar − znear) d
,
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Figure 4.6: Rendering of the illuminated surface points of the skeleton
hand data set containing 327k surface points. (Data set courtesy of
Stereolithography Archive, Clemson University.)

where znear and zfar denote the viewer’s distances to the near and far planes.

However, depth values scaling linearly in the actual distances of the points to the
viewer as well as lying in the range between 0 and 1 are needed to generate a
consistent rendering with global depth thresholds. These linear depth values are
calculated for each projected point by

f(d) :=
d

zfar

and stored at the respective position in the alpha channel of the RGBA color texture.
Background pixels are stored with a depth value of 1.

4.3.2 Pixel Filling

If the sampling rate of surface Γ is high enough such that the projected distances of
adjacent points of the point cloud Γ̃ are all smaller or equal to the pixel size, then
the projected illuminated points that pass backface culling and depth test produce
the desired result of a smoothly shaded surface rendering.

Obviously, this assumption does not hold in general. Especially when zooming closer
to the object the resulting surface rendering exhibits “holes”, such that pixels that
should be filled with object colors are filled with background colors or colors of
underlying surface layers, cf. Figure 4.6. Such pixels are filled in two consecutive
steps with the proper surface color.

In a first pass, pixels incorrectly exhibiting background color need to be filled with
the proper surface color and normal. However, which background pixels wrongly
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Figure 4.7: Closeup view of the rendered surface’s border. Pixels that
have been filled during point rendering are shown in grey, background
pixels in white. All background pixels close to a filled pixel are framed.
Green frames indicate holes in the surface rendering and the respec-
tive pixels have to be filled. Red frames indicate pixels that are beyond
the silhouette of the object and must not be filled.

represent holes and have to be filled and which not has to be carefully chosen.
Figure 4.7 shows the issue and the two cases that need to be distinguished. All
white pixels represent background pixels. While the pixels with a green frame are
examples of holes in the surface that result from low point density and need to be
filled, the pixels with a red frame lie beyond the silhouette of the object and should
maintain their background color.

The distinction between real background pixels and those which are to be filled is
done by utilizing a filter on the image using 3 × 3 pixels. Obviously, this filter has
to be applied only to those background pixels having non-background neighbors in
their 3 × 3-pixels neighborhood. In Figure 4.7, the considered pixels are the ones
that are framed. To identify these pixels that incorrectly exhibit background color
(framed green in Figure 4.7) the eight masks shown in Figure 4.8 are used. Here white
pixels indicate background pixels and the dark pixels could be both background or
non-background pixels.

For each background pixel having at least one non-background neighbor, we test
whether the 3 × 3 neighborhood of that pixel matches any of the cases. In case it
does, the pixel is not filled. Otherwise it has to be filled. The new color, depth, and
normal information is obtained from the pixel with the smallest depth out of the
3×3 neighborhood. This is a simple, yet very fast method which produces acceptable
results.

The implementation of the test for background pixels is very simple and can be
done efficiently by a single test. Assuming that background pixels have depth
one, for each mask in Figure 4.8 the depth values of corresponding white pixels
reduced by one are summed up. If the product of all eight sums equals zero, at
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Figure 4.8: Filters with size 3×3 for detecting whether a background
pixel is beyond the projected silhouette of the object. If one of the
eight masks matches the neighborhood of a background fragment
(blue), it is not filled. White cells indicate background pixels, dark
cells may be background or non-background pixels.

least one sum was zero, i. e. at least one of the eight filters detected that the
observed background pixel is beyond the object’s silhouette.

The process of filling background pixels using the filter is iterated, until no more
background pixels need to be filled. The number of iterations depends on the point
density and the viewing parameters. It is easy to see that every hole in image space
with a maximum diameter of n pixels is filled with at most n iterations. When ap-
plying the background filling to the output of the point rendering example, cf. Fig-
ure 4.6, the result shown in Figure 4.9 is produced with only one filter pass. The
surface does not exhibit any holes with background color anymore. However, there
might be still holes in the surface caused by pixels representing points of occluded
surface parts. Such occluded pixels should also be replaced by color, normal, and
depth values that represent the occluding surface part. This is achieved in an anal-
ogous way like the holes incorrectly exhibiting background color were filled.

Again, the pixels that represent parts of occluded surfaces have to be identified.
In contrast to the considerations before, occluding and occluded pixels have to be
distinguished by a threshold, i. e. a minimum distance d̃ between two consecutive
surface layers. With the help of d̃ the border test is applied to all non-background
pixels. For a candidate pixel with depth d, the used masks are similar to those in
Figure 4.8, where, now, white pixels represent those pixels with depth values greater
than d + d̃ and dark pixels may have any depth value. If the candidate pixel is
identified as being occluded, its color, normal, and depth values are replaced by the
values of the pixel with minimum depth within the filter’s stencil.

In Figure 4.10, the effect of filling occluded pixels when applied to the skeleton hand
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Figure 4.9: Filling background pixels applied to the output of point
rendering (Figure 4.6) of the skeleton hand data set. Only one itera-
tion of the filter had to be applied.

Figure 4.10: Skeleton hand data set after point rendering, filling back-
ground pixels, and one step of filling occluded pixels.
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data set is shown. For the filling of occluded pixels, again only one iteration was
needed. The application of the pixel filling steps to the projected lit point cloud
results in a rendering of the surface exhibiting no holes anymore. However, the use
of neighboring pixels of minimum depth for filling leads to a piecewise constant
representation of the surface in image space.

4.3.3 Smoothing

In order to generate a smooth surface rendering from the piecewise constant image-
space representation of the surface, image-based smoothing is applied to the output
of the pixel filling step. For this smoothing a standard low-pass filter of size 3 × 3,
such as the ones shown in Table 4.1 is applied to the image. Though both, the box
filter and the Gaussian filter could be applied, we prefer an alleviated Gaussian filter,
where the middle pixel is not weighted by 4 but by 16, to avoid blurring of the image.
To avoid mixing of background and non-background colors, the smoothing filter is
only applied to all non-background pixels, with adjusted weights respectively.

1

9

1 1 1
1 1 1
1 1 1

1

16

1 2 1
2 4 2
1 2 1

1

28

1 2 1
2 16 2
1 2 1

Box filter Gaussian filter alleviated Gaussian filter

Table 4.1: Common low-pass filters of size 3 × 3. If a filter is applied
to a pixel, it is assigned the weighted sum of the pixel itself and all
neighboring non-background pixels with the given weights.

The smoothed version of Figure 4.10 is shown in Figure 4.11. A single iteration of
applying the alleviated Gaussian filter suffices to produce the desired result of a
smooth surface rendering. Additionally one can extend the pipeline by anti-aliasing
or illustrative rendering techniques as explained in the following sections.

4.3.4 Anti-aliasing

When having a close-up look at the results generated by the image-space rendering,
cf. Figure 4.12 (a), one can observe aliasing artifacts. The staircase effects become
particularly obvious along the silhouettes and result from the strict classification of
pixels in background and non-background in image space. Thus, it makes also no
sense to apply the smoothing step to the whole image to remove the artifacts.

It rather makes sense to apply an additional anti-aliasing step to the silhouette
pixels, i. e. pixels at the border of background pixels and non-background pixels as
well as pixels at the border of a front surface layer and a back surface layer. To
detect these silhouette pixels, a high-pass filter is applied to the respective depth
values. Many high-pass filters exist and are commonly applied for edge detection.
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Figure 4.11: Point-cloud rendering of the skeleton hand data set af-
ter applying the entire image-space processing pipeline. For the final
smoothing step, an alleviated Gaussian filter of size 3 × 3 has been
applied once.

(a) (b)

Figure 4.12: (a) Close-up view on skeleton hand data set exhibits
aliasing artifacts along the silhouette of the object. (b) Anti-aliasing
by blending with high-pass-filtered depth buffer texture.
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Any of these could be applied. We chose to apply a Laplace filter for our purposes,
as one filter can simultaneously detect edges in all directions. Table 4.2 shows the
Laplace filter of size 3 × 3 that was applied to our examples.

0 -1 0
-1 4 -1
0 -1 0

Table 4.2: Laplace filter used for edge detection.

Applying the Laplace filter to the depth values results in a texture with all silhou-
ette pixels. This texture is blended with the color texture to obtain an anti-aliased
image, cf. Figure 4.12 (b). Before blending the two textures, a thresholding can be
applied to the high-pass-filtered depth information in order to decide whether only
the background-foreground transitions should be anti-aliased (high threshold) or
whether the front-back surface layer transitions should also be further anti-aliased
(low threshold).

4.3.5 Illustrative Rendering

A second way of postprocessing the rendered images is to enhance depth perception
and geometrical structure of the displayed surfaces by non-photorealistic rendering
techniques. The possibility to produce illustrative drawings [ST90] is easily opened
up by the detection of silhouettes described in the previous section and the concur-
rent processing of a normal map throughout the whole rendering pipeline.

(a) (b)

Figure 4.13: (a) Silhouette rendering of skeleton hand data set. The
silhouettes are detected by applying a 3×3 Laplace filter to the depth
values. To make the silhouettes more visible, the lines have been
thickened. (b) Combination of silhouette rendering with illuminated
surface rendering of the skeleton hand data set.

Applying the Laplace filter of Table 4.2 to the depth values of the rendered im-
age leads to a silhouette rendering. As described in the previous section, a thresh-
olding can be used to adjust the amount of silhouettes that are rendered. Fig-
ure 4.13 (a) shows such a silhouette rendering for the skeleton hand data set, while
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Figure 4.13 (b) shows the blending of silhouette rendering with the photorealistic
rendering of Figure 4.11. Thus, the individual parts of the surface become much
clearer and depth relations are more obvious.

(a) (b)

Figure 4.14: (a) Rendering of the feature lines of skeleton hand data
set. The feature lines are detected by applying a 3×3 curvature filter
to the normal map. (b) Final rendering of the illuminated skeleton
hand data set, after applying the entire processing pipeline, smooth-
ing and illustrative rendering.

The available normal map permits a yet much more illustrative type of rendering,
by detecting regions with high surface curvature, i. e. feature lines. The surface
curvature at a surface point can be easily obtained by exploring the dot product
of surface normals at neighboring surface points [Fis89]. It is obtained in image
space by observing surface normals of adjacent pixels. Hence, feature lines can be
extracted from the final rendering, by applying a 3 × 3 filter on the normal map,
highlighting regions with high curvature. An illustrative rendering of the feature lines
of the skeleton hand data set is shown in Figure 4.14 (a). Figure 4.14 (b) shows the
final rendering, including smooth surface rendering, silhouettes, and feature lines.
Again a thresholding can be applied to the generated curvature map to control the
accentuation of the surface features.

4.4 Results and Discussion

Both proposed rendering techniques for point clouds have been tested in terms of
quality and computation speed. Therefore they were tested on a variety of different
point-cloud data sets, either obtained by scanning surfaces of real objects, cf. [CL96],
or isosurface extraction from unstructured point-based volume data, cf. Chapter 2.
All experiments were performed on a single 2.66GHz Intel Xeon processor, supported
by an Nvidia Quadro FX 4500 graphics card for the image-space rendering.

First the surface normal approximation technique was analyzed. The data indepen-
dent computation times for different numbers of surface points and different numbers
of nearest neighbors are given in Table 4.3. As expected the method based on kd-
trees has a complexity of O(n log n) regarding the total number of surface points as
well as regarding the number of nearest neighbors used for normal approximation.
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Just for small numbers of surface points this behavior is not clearly visible since
the computational overhead for generating the kd-tree is to high in relation to the
actual computation of neighbors and normals.

# points 10 neighbors 20 neighbors 30 neighbors 40 neighbors
125k 4 sec 5 sec 7 sec 12 sec
250k 8 sec 11 sec 15 sec 24 sec
500k 15 sec 21 sec 31 sec 48 sec

1,000k 34 sec 46 sec 63 sec 99 sec

Table 4.3: Computation times for surface normal approximation. For
different numbers of surface points and different numbers of nearest
neighbors, respectively, the total times of surface normal computation
are given in seconds. The computation times include the computation
of nearest neighbors as well as the actual normal approximation.

The first step for splat-based ray tracing is the generation of the needed splats for
the given point cloud. This requires the generation of a kd-tree for the surface points
to obtain the nearest neighbors, the actual generation of the splats, as well as the
calculation of the normal field for each splat. A comparison of the computation
times for the splat generation for data sets with different number of surface points
and diverse shapes is given in Table 4.4. Since the data sets have been rescaled
to fit into the unit cube [0, 1]3, we were able to use one global error threshold
δ = 0.0001 indicating the maximum orthogonal distance of covered points to the
splat during the splat generation of all processed data sets. Note that the sphere
surface is very smooth and exhibits no sharp features. Hence, the number of splats
could be dramatically decreased in comparison to the number of surface points.
Nevertheless, nearly all data sets exhibit smooth surface areas and the number of
splats can be significantly reduced.

dataset # points # splats time
fuel 34,665 28,379 4 sec
sphere 113,682 703 5 sec
skeleton hand 327,323 286,911 47 sec
Buddha 543,652 384,007 85 sec

Table 4.4: Computation times and number of generated splats for
the splat generation step. The computation time includes the nearest
neighbor calculation, splat generation, and computation of normal
fields for each splat.

The actual computation times for the ray-tracing step heavily depend on the actual
scene, i. e. the data set, the objects properties, and the ray-trace depth. Figure 4.15
shows a ray-traced image from a scene combining the skeleton hand and the sphere
data set. The image was generated using ray-trace depth 4. The hand is reflective
and the sphere exhibits the effects of reflection and refraction assuming that the
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sphere is made of solid glass. To get an overview over the performance of the ray-
tracing process in terms of computation speed, a comparison for different screen
resolutions and ray-trace depths is given in Table 4.5. As expected the computation
time for ray tracing increases linearly with the number of pixels. With respect to the
ray-trace depth the time for ray tracing increases sublinearly, which mainly results
from the minor chance for secondary rays to hit surfaces of the scene again.

Figure 4.15: Splat-based ray tracing of the skeleton hand data set,
combined with the sphere data set. For the rendering one white light
source was used and the ray-trace depth was 4, leading to 115 seconds
of computation time. The hand surface is reflective with a golden
color. The sphere is made of solid glass, i. e. reflective and translucent,
which leads to reflection effects of the hand in the lower hemisphere
and refraction effects in the upper hemisphere of the sphere.

resolution 1502 3002 6002 12002

ray-trace depth 2 2 2 0 1 2 4
computation time 1 sec 5 sec 22 sec 45 sec 73 sec 88 sec 115 sec

Table 4.5: Comparison of computation times for ray tracing the scene
from Figure 4.15 with different resolutions and ray-trace depths.

The performance of the splat-based ray-tracing approach in terms of quality, was
analyzed with various additional data sets. A splat-based ray tracing of the scanned
Buddha data set in front of a solid sphere is shown in Figure 4.16. The surface of
the Buddha is golden and reflective. In contrast to Figure 4.15, the sphere is just
reflective and colored blue. The scene includes three white light sources and was ray-
traced with ray-trace depth 2. The rendering time for the image with 1200 × 1200
pixels was 408 seconds, which mainly results from the high number of splats, cf.
Table 4.4, the few number of pure background pixels, and the complex geometry of
the Buddha surface as indicated by the numerous self reflections on the surface.

As already shown in Chapters 2 and 3, the proposed ray-tracing technique is also able
to produce high-quality images for point clouds obtained by direct surface extraction
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Figure 4.16: Splat-based ray tracing of the Buddha data set in front
of a solid sphere rendered with ray-trace depth 2. Both surfaces are
reflective and illuminated by three white light sources, leading to a
rendering time of 408 seconds. The Buddha is colored golden while
the sphere is dark blue. (Data set courtesy of Stanford Computer
Graphics Laboratory.)
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from unstructured point-based volume data. The fuel data set, cf. Table 4.4, was
also created by direct surface extraction from unstructured point-based volume data.
A ray tracing of the point cloud is shown in Figure 4.17. The scene consists of
the reflective grey surface, illuminated by three different colored light sources. The
computation time for rendering at a viewport of 1200× 1200 pixels with a ray-trace
depth of 2 was 84 seconds. In this picture, one can see the nice transitions of the
light colors on the surface as well as the correct and realistic computation of partial
shadows.

Figure 4.17: Splat-based ray tracing of the fuel data set obtained with
ray-trace depth 2. The grey surface is reflective and illuminated by
three light sources of different color (red, green, blue). The time for
ray tracing was 84 seconds. (Data set courtesy of SFB 382 of the
German Research Council (DFG).)

Altogether our presented splat-based ray-tracing method for point clouds produces
very impressive renderings with photo-realistic effects and global illumination. Our
computation times are clearly below the times we obtained with the approach of
Wald and Seidel [WS05]. For the scene from Figure 4.18 and a ray-trace depth of 0,
their approach lasted 120 seconds, while our approach only lasted 97 seconds. Com-
paring the achieved rendering quality, our splat-based ray tracing is at least equally

CHAPTER 4. POINT-CLOUD RENDERING



4.4. RESULTS AND DISCUSSION 85

good. In fact, the method by Wald and Seidel exhibits some incorrectly shaded pixels
which do not appear in our approach, as shown in Figure 4.18. Probably, these in-
correct pixels could be circumvented by using different parameters in the challenged
method, which would, however, lead to even higher computation times.

(a)

(b)

Figure 4.18: Comparison between splat-based ray tracing (a) and the
ray-tracing technique proposed by Wald and Seidel (b). Both ap-
proaches were applied to the same scene of the hand data set with
the same set of splats and a ray-trace depth of 2. The splat-based
ray tracing lasted 128 seconds, while the challenged approach lasted
170 seconds and exhibits some incorrectly shaded pixels visible in the
close-up view on the right.

The second proposed point-cloud rendering approach has a different purpose. Instead
of using preprocessing time to compute a highly photorealistic but static picture as
with splat-based ray tracing, the image-space point-cloud rendering produces high-
quality and interactive renderings of point clouds without any precomputation. It is
possible to directly explore smoothly shaded surfaces interactively generated based
on the point clouds. A comparison between splat-based ray tracing and image-space
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point-cloud rendering is shown in Figure 4.19. Both pictures, (a) and (b), show the
same sphere data set rendered with the two proposed rendering techniques respec-
tively. The quality of the ray-traced picture is, obviously, higher, since illumination
and highlights are computed with the help of a normal field. Nevertheless, the sur-
face generated by image-space point-cloud rendering is smooth and does not exhibit
any holes. Additionally the rendering can be generated interactively in contrast to
splat-based ray-tracing.

(a) (b)

Figure 4.19: Comparison of splat-based ray-tracing and image-space
point-cloud rendering applied to the sphere data set respectively. In
(a), a set of splats was generated from the data set and rendered using
splat-based ray tracing with ray-trace depth 1. The overall computa-
tion time was 39 seconds. Note the very smooth surface although only
703 splats were computed to model the whole sphere. To the same
data set with 113k surface points also the image-space point-cloud
rendering technique was applied in (b). For filling the background
pixels two filter steps have been applied followed by one smooth-
ing step. Since the surface is convex, no filling of occluded pixels is
needed. The average frame rate of the rendering was 34 fps.

The image-space rendering approach was also tested with the help of several point-
cloud data sets. Again these have different origins. Some data sets were obtained by
scanning 3D objects, like the skeleton hand data set used to visualize the method
throughout Section 4.3. Additionally we considered the Buddha data set (courtesy
of the Stanford University Computer Graphics Laboratory) and the dragon data
set (courtesy of Stanford University Computer Graphics Laboratory). As data sets
representing an isosurface of a volumetric scalar field we used the turbine blade data
set (provided with the Visualization Toolkit) as well as the sphere data set.

The method was implemented in C++ with OpenGL. For the GPU implementation
the OpenGL Shading Language was used. All experiments show that the proposed
image-space rendering method is able to render point clouds with hundred thousands
of points at interactive frame rates. A comprehensive overview over the computation
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times for the presented data sets is given in Table 4.6. For each data set the respec-
tive computation times for point rendering, background pixel filling, occluded pixel
filling, smoothing, and anti-aliasing or illustrative rendering is given with respect to
two different viewport sizes. The actual frame rates for the overall rendering process
and for the illustrative rendering technique are additionally given. Note that the
frame rate is nearly halved when applying the illustrative rendering, since all pixel
filling steps have to be applied to the normal field additionally.

data set (# points) Dragon (437k) Buddha (544k)
viewport 512 × 512 1024 × 1024 512 × 512 1024 × 1024
point rendering 11.5 ms 12.0 ms 14.2 ms 14.4 ms
background fill. iter. 1.9 ms 8.6 ms 2.0 ms 9.3 ms
occluded fill. iter. 4.1 ms 14.7 ms 4.1 ms 15.8 ms
smoothing 0.9 ms 5.9 ms 1.0 ms 5.9 ms
anti-alias./illustrative 1.2 ms 1.9 ms 1.1 ms 1.9 ms
overall w. illustr. rend. 51 fps 20 fps 45 fps 18 fps
overall 95 fps 38 fps 82 fps 35 fps

data set (# points) Sphere (113k) Blade (883k)
viewport 512 × 512 1024 × 1024 512 × 512 1024 × 1024
point rendering 7.0 ms 7.3 ms 24.8 ms 25.2 ms
background fill. iter. 1.9 ms 8.9 ms 1.1 ms 8.8 ms
occluded fill. iter. 4.0 ms 14.6 ms 3.8 ms 14.2 ms
smoothing 1.7 ms 7.9 ms 1.5 ms 7.0 ms
anti-alias./illustrative 1.1 ms 2.0 ms 1.1 ms 2.1 ms
overall w. illustr. rend. 44 fps 18 fps 31 fps 16 fps
overall 80 fps 34 fps 60 fps 29 fps

Table 4.6: Computation times for individual processing steps for three
different data sets with two viewports. The time in milliseconds is
given for each single computation step. The overall frame rate with
illustrative rendering includes the complete processing pipeline ap-
plied to both, the color image and the normal map, with required
number of iterations. In comparison, the overall frame rate for ren-
dering the surface without illustrative rendering is given. All frame
rates are given in frames per second (fps).

The very good performance of the image-space rendering technique in terms of
quality is shown in the following pictures. All renderings have been generated using
a 1024 × 1024 pixel viewport. Since the calculated depth values of pixels are linear
and bounded to the interval [0, 1] a global minimum depth threshold d̃ = 0.0001 to
distinguish between foreground and background, cf. Section 4.3.2, was used for all
data sets.

Figure 4.20 shows an image-space rendering of the dragon data set consisting of
437,000 points. Background pixels have been filled using one filter step, while the
filter for filling occluded pixels have been applied twice. Afterwards the image was
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smoothed with one filter step. The average frame rate for the rendering without
normal map was 38 frames per second.

Figure 4.20: Image-space point-cloud rendering of the dragon data
set with 437k surface points. Background pixels have been filled with
one filter step, followed by two steps of the occluded pixel filling filter
and one smoothing step. The average frame rate was 38 fps.

A picture showing the illustrative rendering technique to enhance depth perception
is presented in Figure 4.21. For the Buddha data set with 544,000 surface points
the filter pipeline was applied to the rendered points as well as to the normal map.
Background pixels have been filled with one filter step, followed by two steps of the
occluded pixel filling filter and one smoothing step. From the normal map feature
lines have been extracted and blended with the rendered image to obtain the il-
lustrative rendering. Even though the whole pipeline was applied to generate the
illustrative rendering, it is still possible to obtain interactive frame rates of 18 frames
per second on average.

Finally an anti-aliased rendering of the blade data set with 883,000 surface points
is shown in Figure 4.22. Both background pixels and occluded pixels have been
filled with three filter iterations, followed by one smoothing step. Subsequently anti-
aliasing was applied to the silhouette of the surface. The average frame rate for the
rendering was 29 frames per second. Note the perfect filling of occluded pixels even
if consecutive layers of surfaces come close to each other.

Comparing our results to the pictures created by Grossman and Dally [GD98],
shows a significant gain in rendering quality. In contrast to their renderings, our
pictures are competitive with renderings of standard approaches applied to trian-
gular meshes and other state-of-the-art point-cloud rendering algorithms, e. g. by
Marroquim et al. [MKC07, MKC08]. Furthermore, the performance of our approach
in terms of rendering times is better than the results presented by Marroquim et al.
The authors state a frame rate of 21 frames per second for the Buddha data set and
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Figure 4.21: Illustrative rendering of the Buddha data set with 544k
surface points. Background pixels of the point rendering as well as
the normal map have been filled with one filter step, followed by
two occluded pixel filling steps and one smoothing step. Finally the
feature lines have been extracted and blended with the rendering.
The overall average frame rate of the rendering was 18 fps.
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Figure 4.22: Anti-aliased image-space point-cloud rendering of the
turbine blade data set with 883k sample points. Background pixels
as well as occluded pixels have been filled with three filter iterations.
Afterwards the image was smoothed with one filter step and anti-
aliasing has been applied to the silhouette resulting in an average
frame rate of 29 fps.

CHAPTER 4. POINT-CLOUD RENDERING



4.4. RESULTS AND DISCUSSION 91

a resolution of 10242. Our method achieves a frame rate of 35 frames per second,
rendering the same model and using comparable hardware.

Additionally and like most other point-cloud rendering algorithms, the method of
Marroquim et al. does not allow the direct rendering of point clouds. Instead, a splat-
like radius of influence is required for each surface point. The computation of such
local surface reconstructions always induces the construction of space partitions and
neighbor queries. Already for medium-sized data sets like the Buddha data set with
544k surface points this precomputation requires several seconds. In contrast, our
approach is able to directly render point clouds without any precomputations, which
is desired especially for the rendering of extracted isosurfaces or when visualizing
time-varying point-cloud data sets.

However, the local image-space computations and ommission of any precomputa-
tion leads to the drawback that only actual holes can be filled. If the screen space
exhibits only single pixels, each with an empty 2-neighborhood, which may result
from very high zoom levels, the filters will not be able to detect the surface and
fill the background. At these high zoom levels, the amount of visible points is just
a small fraction of the original point cloud. A hybrid approach generating a local
surface reconstruction could help in these cases to assure a consistent rendering
quality [HTZL06, MKC08, WGK05].

In summary, our approach is capable of generating point-cloud renderings of high
quality at interactive rates without any precomputations. For renderings with a
high point-per-pixel ratio the results are competitive or even better than compara-
ble methods in terms of rendering quality. In terms of rendering speed the achieved
frame rates are better than state-of-the-art point-cloud rendering algorithms. In
contrast to most competitive methods, the presented image-space point-cloud ren-
dering technique can be directly applied to point clouds without any time-consuming
precomputations.
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Chapter 5

Conclusions

In this work we have proposed a visualization pipeline for surface extraction from un-
structured point-based volume data. The pipeline includes all necessary steps to pro-
duce high-quality visualizations by extracting surfaces with different properties. An
isosurface extraction step directly extracts isosurfaces in point-cloud representation.
No global or local polyhedrization or reconstruction over a regular grid is applied.
Instead, isopoints are computed by linearly interpolating between neighboring pairs
of sample points. The neighbor information is retrieved by approximating natural
neighbors as defined by Voronoi diagrams. We achieved surface extractions of high
quality with significantly faster computation times than comparable approaches.

For noisy data or highly varying point densities, a level-set-based preprocessing step
was introduced. This step generalizes the well-known technique of level sets, formerly
only applicable to gridded data, such that it can be directly applied to unstructured
point-based data without any reconstructions in data domain. By utilizing hyper-
bolic advection combined with mean curvature flow, the introduced level-set function
is deformed such that its gradients stay normalized and the zero level set approx-
imates the sought isosurface. By executing this step before isosurface extraction,
we were able to extract smooth isosurfaces also from noisy or highly varying data.
The achieved results are comparable in terms of quality with other approaches, that
tackle similar problems. However, our level-set method is the only one able to be
directly applied to unstructured point-based data.

As the surfaces are extracted in point-cloud representation, it is favorable to use
point-cloud rendering techniques to visualize them. For this purpose, two differ-
ent approaches have been presented. The first computes a set of circular splats with
associated normal fields. Afterwards the set of splats is ray traced to generate a visu-
alization of the surface which allows for photorealistic effects like global illumination,
reflection, and refraction. In contrast, the second approach generates an interactive
yet smooth visualization of the surface without any precomputations. The lit points
are projected to screen space and possible holes are filled using image-space opera-
tions. Optionally the processing of an associated normal field allows the application
of illustrative rendering techniques to enhance the depth perception of the interac-
tive visualization. For both point-cloud rendering approaches we achieved results of
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comparable visual quality and faster computation times, when compared to related
state-of-the-art rendering techniques.

The presented visualization pipeline has been tested with the help of several data
sets with different types of origin. The individual steps have been compared to com-
petitive methods and assets and drawbacks have been discussed. The practicability
of the pipeline is not only demonstrated on real-world data sets, but also directly in
cooperation with data set providers [LLR09, LLRR08, RLL08, RRL07].
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