
Eurographics/ IEEE-VGTC Symposium on Visualization (2006)
Thomas Ertl, Ken Joy, and Beatriz Santos (Editors)

Direct Isosurface Extraction from Scattered Volume Data

Paul Rosenthal Lars Linsen

Department of Mathematics and Computer Science
Ernst-Moritz-Arndt-Universität Greifswald

Greifswald, Germany
{paul.rosenthal,linsen}@uni-greifswald.de

Abstract

Isosurface extraction is a standard visualization method for scalar volume data and has been subject to research
for decades. Nevertheless, to our knowledge, no isosurface extraction method exists that directly extracts surfaces
from scattered volume data without 3D mesh generation or reconstruction over a structured grid. We propose a
method based on spatial domain partitioning using a kd-tree and an indexing scheme for efficient neighbor search.
Our approach consists of a geometry extraction and a rendering step. The geometry extraction step computes
points on the isosurface by linearly interpolating between neighboring pairs of samples. The neighbor information
is retrieved by partitioning the 3D domain into cells using a kd-tree. The cells are merely described by their index
and bitwise index operations allow for a fast determination of potential neighbors. We use an angle criterion to
select appropriate neighbors from the small set of candidates. The output of the geometry step is a point cloud
representation of the isosurface. The final rendering step uses point-based rendering techniques to visualize the
point cloud.
Our direct isosurface extraction algorithm for scattered volume data produces results of quality close to the results
from standard isosurface extraction algorithms for gridded volume data (like marching cubes). In comparison to
3D mesh generation algorithms (like Delaunay tetrahedrization), our algorithm is about one order of magnitude
faster for the examples used in this paper.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-dimensional Graph-
ics and Realism: Isosurface extraction

1. Introduction

Isosurface extraction is the most commonly used visualiza-
tion technique for scalar volume data beside direct volume
rendering. A vast number of isosurface extraction algorithms
exists. Many of them address a specific problem of isosur-
face extraction when applied to certain types of grids. The
grid types include all kinds of structured grids, irregular
grids, and adaptively refined grids. The algorithms typically
operate on hexahedral or tetrahedral cells, and frequently use
an approach that marches through all the cells of the grid.

Although all these approaches have been introduced for
various data structures, to our knowledge no algorithm ex-
ists that directly operates on unstructured or scattered vol-
ume data when no grid connectivity is given. To deal with
scattered volume data, the data are typically resampled over

a regular structured grid using scattered data interpolation
techniques or converted into an irregular grid using a poly-
hedrization technique. While the former approach may pro-
duce resampling inaccuracies, the latter is typically compu-
tationally expensive and often rather cumbersome to imple-
ment.

With the improved technological capabilities of data ac-
quisition systems, the amount and variety of data produced
has increased substantially. One example that is gaining in-
creasing attention is that of sensor systems, where a large
number of sensors are placed to measure environmental pa-
rameters. The wireless sensors have become tiny and cheap
and can transmit their measured values any time to a data-
collecting server.

Another attractive property of scattered data approaches

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org

P. Rosenthal & L. Linsen / Direct Isosurface Extraction from Scattered Volume Data

is that they naturally include all grid-based configurations. A
scattered data visualization approach can always be applied
to a gridded data set by neglecting the grid connectivity. This
approach does not seem to be worth pursuing at first glance.
However, when dealing with adaptively refined grids, most
isosurface extraction approaches introduce constraints on the
adaptive refinement. Considering the data as being scattered
would eliminate such constraints. Moreover, if the data come
from simulations executed on various grids of different res-
olution, which may overlap, exhibit gaps, or suffer from dis-
continuities, treating the entire data set as scattered data may
become an option.

We propose a method for direct isosurface extraction from
scattered volume data, i. e. we are not resampling the data
over a structured grid nor are we generating global or local
polyhedrizations (e. g. Delaunay tetrahedrization). Instead,
we compute points on the isosurface by interpolating be-
tween neighboring samples of the scattered volume data set.
The resulting point cloud describes the isosurface, which is
visualized using point-based rendering techniques. In Sec-
tion 3, we describe in more detail the processing pipeline of
our isosurface extraction and rendering method.

Since nearest neighbors computation is not suitable to
compute the pairs of neighboring points used to determine
the points on the isosurfaces, we use spatial domain decom-
position based on a three-dimensional kd-tree. To quickly
access the cells of the kd-tree, we introduce a binary index-
ing scheme for tree traversal, see Section 4. To address one
particular cell, we do not need to traverse the tree but can
directly access it. The search for our neighbors in the kd-tree
is reduced to bitwise operations on the indices representing
the cells. In Section 5, we describe our method to obtain a
small number of potential candidates for our neighbors. We
introduce an angle criterion to select the appropriate neigh-
bors among the candidates, as described in Section 6. The
angle criterion can also be used to regulate the number of
points we compute.

Once the appropriate neighborhood of a sample has been
determined, we examine, which neighbors are separated
from the sample by the isosurface. We linearly interpolate
between the sample and each neighbor lying beyond the iso-
surface to compute points on the isosurface, see Section 7.
This step leads to a point cloud, which we render in a final
step using point-based rendering techniques, see Section 8.

To evaluate our approach, we apply it to synthetic and real
data sets. For the synthetic data sets, we can compute how
far the computed points are from an analytic representation
of the isosurface. We even compare our methods to isosur-
face extraction methods for structured grids. We observe that
the quality of the results we generate with our methods are
close to the output of standard gridded isosurface extraction
methods, although we directly compute them from the scat-
tered data. In terms of computation time we compare our
methods to 3D mesh generation algorithms like Delaunay

tetrahedrization. We achieved a speed-up of about one order
of magnitude for the data sets we have been using. A detailed
analysis of our results is provided in Section 9.

2. Related Work

Isosurface extraction has a long tradition since the pioneer
work by Lorensen and Cline [LC87] on marching cubes.
Many extensions exist and marching isosurface extraction
approaches have also been introduced for other grid struc-
tures like tetrahedral grids [GH95] and for adaptively refined
grids [VKSM04]. For adaptive grids, a standard marching
cubes-like approach may generate surfaces with gaps caused
by hanging nodes. This observation led to the development
of a family of dual contouring approaches extracting points
on the surface in the cell’s interior [JLSW02]. Still, the ap-
proaches impose constraints on the adaptive grid structure
and do not allow for arbitrary configurations.

Recently, approaches have been introduced to deal with
arbitrary configurations including scattered data. Co et al.
have proposed approaches for isosurface extraction from
multigrid data [CPJ04] and scattered data [CJ05]. They gen-
erate points on the isosurface, which are rendered using
splatting techniques [CHJ03]. Other approaches for render-
ing isosurfaces in form of point clouds using splatting have
been proposed by Livnat and Tricoche [LT04] and Ryman-
Lipinski et al. [vRLHJ∗04]. Among these approaches only
the method by Co et al. [CJ05] allows scattered volume data
as an input. However, instead of generating the points on
the isosurface directly from the scattered volume data, they
generate local tetrahedral grids and compute the points from
the local grid. Our approach, on the other hand, operates
directly on scattered volume data and extracts isosurfaces
without generating any global or local polyhedral grid. Our
approach may also be applied to any gridded volume data
or its adaptively refined counterpart without imposing con-
straints. However, this may only be worthwhile in case of
nasty adaptive configurations, as our method would not ben-
efit from any existing structural information.

Standard ways of dealing with scattered volume data
would be to resample the data using scattered data interpo-
lation techniques or to compute a polyhedral grid that con-
nects the scattered data points. Scattered data interpolation
is a well-studied field. We refer to one of many surveys
on this topic for further details [FN91]. Recently, Park et
al. [PLK∗06,PLK∗05] have shown that scattered data recon-
struction for large data sets can be achieved at interactive or
near-interactive rates when resampling over a regular grid.
Unfortunately, such resampling steps always induce inaccu-
racies.

An alternative is to generate a tetrahedral grid from
the scattered data [Nie93]. Delaunay tetrahedrizations are
known to produce desirable results. Since the asymptotic
complexity for the tetrahedrization is quadratic, the compu-

c© The Eurographics Association 2006.

100

P. Rosenthal & L. Linsen / Direct Isosurface Extraction from Scattered Volume Data

tation times may be very high for large data sets. We com-
pare our approach to the generation of global and local De-
launay tetrahedrization. Our approach significantly outper-
forms the Delaunay algorithm.

Point-based surface representations have gained a lot of
attention since the first works by Pfister et al. [PZvBG00],
Rusinkiewicz and Levoy [RL00], and Linsen [Lin01] had
been presented. Current point-based rendering techniques
can be grouped into splatting approaches [PZvBG00, RL00]
and point set surface approaches [ABCO∗01, Lev03]. We
make use of splatting approaches to render our isosurfaces.

3. General Approach

Let f : R
3 → R be a trivariate scalar function, whose values

are given for a large, finite set of samples (xi, f (xi)). The
sample positions xi ∈ R

3 are scattered, i. e. they are not ar-
ranged in a structured way, nor are any connectivity or neigh-
borhood informations known for the sample locations. Our
goal is to extract an isosurface f (x) = viso with respect to
any real isovalue viso out of the range of function f .

Isosurface extraction over discrete structures is typically
performed in two steps. First, a number of points pk ∈ R

3 on
the isosurface are computed, i. e. f (pk) = viso. For this pur-
pose, an interpolation scheme is applied to the function val-
ues f (xi) in order to locally reconstruct a continuous scalar
field between the given discrete sample positions xi. We re-
fer to the points pk on the isosurface as isopoints.

In a second step, some kind of neighborhood information
for the isopoints is generated, which is used to render the
isosurface. When the samples are arranged in a structured
grid, the neighborhood information can be retrieved from the
structure of the grid. Typically, polygonal meshes are gener-
ated and rendered.

Our idea for isopoint computation from scattered volume
data is based on linear interpolation between pairs of sam-
ples with close positions xi and x j . The inspiration for this
approach is given by isopoint computation using the march-
ing tetrahedra algorithm after partitioning the domain via
Delaunay tetrahedrization. The analogy is illustrated in Fig-
ure 1 for the 2D case. When considering the scattered sample
positions in Figure 1, the Delaunay triangulation connects
natural neighbors defined by the Voronoi diagram. For ex-
ample, sample position xi gets connected to its six surround-
ing neighbors (forming a 1-ring). The marching tetrahedra
algorithm computes isopoints on the connecting edges that
intersect the isosurface. If in Figure 1 the filled dots rep-
resent exactly those sample positions with function values
greater than the isovalue, the contour may have the shape
indicated by the dashed line. Three of the edges incident to
xi intersect by the contour. The isopoints on the edges are
computed using linear interpolation along the edges.

We want to adopt this isopoint computation method for

x i

x

x

x

j

k

l

contour

1−ring

Delaunay
triangulation

Figure 1: Isopoint computation for scattered data via De-
launay triangulation and linear interpolation along Delau-
nay edges. For sample position xi the incident edges to sam-
ple locations x j , xk, and xl intersect the contour.

our purposes while avoiding the computation of the Delau-
nay tetrahedrization. Thus, we need to estimate the natu-
ral neighbors for each sample position xi. Since the exact
natural neighbors can only be determined via the expensive
Voronoi diagram computation, we approximate its result us-
ing a spatial decomposition. Note that replacing the natu-
ral neighbors by the nearest neighbors would fail in case of
varying density distributions of the samples. The kd-tree data
structure [Ben75] is known to be a data structure with well-
balanced trade-off between flexibility and efficiency. Oper-
ations on a kd-tree are considerably fast, yet it is robust
against varying density distribution and clustering of sam-
ple positions. To perform a fast exploration of the kd-tree,
we introduce an indexing scheme that, beside saving storage
space, allows us to determine neighbors using bitwise opera-
tions on the index. We determine a small number of potential
candidates for our neighbors and reject some of them using
an angle criterion. When considering the 2D case in Fig-
ure 1, we ideally would reject all the candidates that do not
belong to the 1-ring.

Exploiting this neighborhood information, we select those
pairs of neighbors that are separated by the isosurface. We
compute the isopoint by linearly interpolating between the
two samples.

In a final step, we render the isosurface. The geometry
of our isosurface is merely described by the positions of our
isopoints. In the field of surface rendering, this surface repre-
sentation is often referred to as a point cloud. We use point-
based rendering techniques to render the isosurface.

4. Scattered Data Storage

We store the n scattered data points in a three-dimensional
kd-tree. For each sample, we store its position and function

c© The Eurographics Association 2006.

101

P. Rosenthal & L. Linsen / Direct Isosurface Extraction from Scattered Volume Data

value in an array, such that we only store the respective in-
dices in the kd-tree. We build the kd-tree recursively. The
root represents the bounding box storing all samples. For
each node of depth i, we sort the vector v storing the sam-
ples of the respective cell in xi mod 3-direction, where x0, x1

and x2 denote the three dimensions. We split v in two half-
sized subvectors v1 and v2. If v is odd-sized, a link to the
midpoint is stored in the current node of the tree in addition
to the pivot value used for the split. We proceed recursively
with the children nodes storing v1 and v2, respectively. The
recursion stops when the subvector has length 1. Thus, each
cell of the kd-tree contains exactly one sample.

The height of the tree is dlog2(n+1)e. In worst-case
(n = 2 j), j ∈ N+, the number of nodes in the kd-tree is
2n− 1. The whole tree is stored in an array, where the root
is at position 1 and the children of the node at position j
are stored at positions 2 j and 2 j + 1. This order leads to an
indexing scheme that is used to directly access the nodes.
The indices can quickly be computed by using their binary
representation and bit-wise operators.

In the following, all integers indexed with d, such as ad or
100d denote binary numbers. The operator ⊕ denotes the bit-
wise Boolean exclusive-or operator. Finally, the operators �
and � denote the bit-shift operators, which are recursively
defined by

0. ad � 0 = ad and ad � 0 = ad.
1. ad � j = (ad � (j−1))∗2.
2. ad � j = (ad � (j−1))div2.

In our kd-tree, The father of node with index bd has
index bd � 1 and its children have indices bd � 1 and
(bd � 1)⊕1d, see Figure 2. Thus, we can navigate through
the tree using fast binary operations. Moreover, qualitative
propositions about the locations of cells can be made. For
instance the cells with index 1111d and 1000d lie in diago-
nally distant corners of the kd-tree. Thus, many informations
are implicitly saved in the indexing scheme. We exploit this
property for fast neighbor search.

111

10

101

1111110 1111
10111010

1001000 1001
1100 1101

110

Figure 2: Indexing scheme for two-dimensional kd-tree.

5. Neighbors Search

For a point x lying in cell c, the neighborhood N(c) contains
all other cells or splitting planes that have at least one point

in common with c. A 2D example of the neighborhood of a
point x is shown in Figure 3. All bright areas and solid lines
belong to the neighborhood.

x

Figure 3: Neighborhood of x.

The way we store the nodes of the kd-tree in the vec-
tor constitutes that the position of every node of the tree
is uniquely determined by the binary representation of its
index. The inner nodes represent splitting planes, the leaf
nodes represent cells. We find the neighborhood N(c) of cell
c in two steps.

In the first step, we compute the direct neighbors, which
are the splitting planes and cells that result from the last three
splitting steps during tree generation, see Figure 4. Let bd be
the index of cell c. The splitting planes bd � 1, bd � 2, and
bd � 3 are direct neighbors, each containing one face of c.
The adjacent cells to these faces are also direct neighbors
leading to {bd ⊕1d,bd ⊕10d,bd ⊕100d} ⊂ N(c).

bd ⊕101d

bd ⊕111d

bd ⊕1d

bd ⊕100d

bd ⊕110d

bd

bd ⊕10d

Figure 4: Direct neighbors search for cell c with index bd.

Moreover, we have to check against the splitting planes
beyond the already inserted planes whether these planes and
the remaining four cells in Figure 4 belong to the neighbor-
hood. For example, the grey plane in Figure 4 separating the
cells with indices bd⊕101d and bd⊕100d corresponds to in-
dex (bd � 1)⊕10d. It has no common point with c and does
not belong to N(c). Therefore, bd ⊕101d does not belong to
N(c), either.

We need to check against four such splitting planes and
the complete the list of direct neighbors using the following
criteria:

1. (bd � 1)⊕1d ∈ N(c) ⇒ bd ⊕11d ∈ N(c)

c© The Eurographics Association 2006.

102

P. Rosenthal & L. Linsen / Direct Isosurface Extraction from Scattered Volume Data

2. (bd � 1)⊕10d ∈ N(c) ⇒ bd ⊕101d ∈ N(c)
3. (bd � 2)⊕1d ∈ N(c) ⇒ bd ⊕110d ∈ N(c)
4. {(bd � 2)⊕1d,(bd � 1)⊕10d} ⊂ N(c)

⇒ bd ⊕111d ∈ N(c)

The obtained neighborhood covers half of the faces of c and
includes at least three and at most seven cells plus the re-
spective splitting planes in between.

In the second step, we want to get neighbors for the three
other faces of cell c, called indirect neighbors. In contrast to
the direct neighbors, the maximum number of indirect neigh-
bors is not constant. In the 2D case, the maximum number of
indirect neighbors is O(

√
n), see Figure 5. In the 3D case, the

maximum number of indirect neighbors is O(
3
√

n2). How-
ever, this worst case can at most occur for a small number of
cells. The average case for a cell in three dimensions has up
to nine neighbors for each face, leading to 27 indirect neigh-
bors per cell.

x

Figure 5: Indirect neighbors of x.

To compute the indirect neighbors, we first have to find
the three splitting planes, that cover the remaining faces of
cell c. To determine these cells, we go through the bits of
the binary index bd back to front considering every third bit.
Thus, we investigate the location of cell c with respect to the
splitting planes in one dimension at a time. We search for the
first bit swap. If j is the bit, where the first bit swap occurs,
the sought plane is bd � j.

1001000011001

1001000011001

1001000011001

Figure 6: Bit swap search for dimensions x0 (top), x1 (mid-
dle), and x2 (bottom).

For example, let bd = 1001000011001d, see Figure 6.

When investigating the x0-sequence, no bit swap occurs.
Thus, c lies “to the left” of every division plane in this di-
mension, and c has no bounding plane to the left, i. e. no indi-
rect neighbors in x0-direction. The search in the x1-sequence
delivers a bit swap from 0 to 1 in the fifth bit from the back.
Thus, the plane that bounds c in x1-direction to the left is
bd � 5 = 10010000d. Similarly, we get plane 100100d in
x2-direction.

For each of the at most three found planes p, we have to
search for all cells and planes out of N(c) that lie on the op-
posite side of p with respect to c. The sought cells and planes
all have a depth in the kd-tree higher than that of p. More-
over, the sought planes do not split in the same direction as
p. Exploiting these properties we recursively search in the
subtree starting from p. The algorithm is described by:

if (current plane splits in the same dimension as p)
continue with subtree of current node next to c

else
if (current plane has a common point with c)

add current plane to N(c)
continue with both subtrees of the current node

else
continue with subtree of current node next to c

In this recursion, planes are iteratively checked for being
indirect neighbors of c. The recursion stops in leaf nodes that
represent cells belonging and being added to N(c).

In our example of Figure 6, we obtained pd = 10010000d
as a splitting plane for bd = 1001000011001d. The recur-
sion starts with plane 100100000d. Assuming that it is on
the right of c, we proceed with 1001000000d. If this plane
has a common point with c, we have to insert it into N(c)
and proceed with 10010000000d and 10010000001d. Since
we stepped down three times in the tree, these two planes
are parallel to pd. Thus, we proceed with 100100000001d
and 100100000011d, respectively. The recursion stops in the
next step by obtaining all indirect neighbor cells of c.

Only the test on which side of a plane cell c lies uses the
coordinates of c when comparing it to the pivot value of the
splitting plane. All other operations are performed on the
binary representation of c using fast binary operations. Thus,
our search for all neighbors has a performance that is similar
to nearest-neighbor search in kd-trees.

6. Angle Criterion

Having computed a neighborhood for each sample point, we
use the points in the neighborhood for further processing.
However, not all points in the neighborhood are appropriate
for isopoint computations. An undesired situation is shown
in Figure 7. The sample in the lower right corner has two
neighbors on the opposite side of the isosurface. Only the
closer one should be considered for isopoint computation,
as the interpolated isopoint with the farther neighbor would
be farther from the surface than the closer neighbor.

c© The Eurographics Association 2006.

103

P. Rosenthal & L. Linsen / Direct Isosurface Extraction from Scattered Volume Data

Figure 7: Undesired neighborhood.

We establish an angle criterion to avoid such situa-
tions. We extend the angle criterion method Linsen and
Prautzsch [LP01, LP03] used for point-based surface repre-
sentations to volume data. All points in the calculated neigh-
borhood N(c) of x are sorted according to their distance to
x. We delete all those neighbors, for which the angle β be-
tween the edge from x to that neighbor and the edge from x
to any neighbor closer to x is beneath a given threshold α,
see Figure 8.

x

β

Figure 8: Dashed Neighbor of x violates angle criterion
(β < α).

The choice for angle α is motivated by Figure 9. Assum-
ing gridded data, we not only want to include the six closest
neighbors to x, but also the diagonal neighbors. Thus, we
typically use α = cos

(1√
3

)

. Such a choice is consistent with
the angles obtained when considering the three-dimensional
optimal sphere packing problem.

xα

Figure 9: Choice of minimal angle α between edges to the
neighbors of x.

7. Isopoint Computation

To compute the isopoints, we have to check whether there
are points in the reduced set of N(c) that are separated from x
by the isosurface. If there are, isopoints are created by linear
interpolation between x and the respective neighbors. Be-
cause of the angle criterion the neighborhood creation is not
symmetric. It is possible that x is not neighbor of all points in
N(c). Thus, we cannot exploit symmetry and may compute
some isopoints twice.

8. Point-based Isosurface Rendering

Since we do not generate any connectivity between our iso-
points, we apply point-based rendering techniques to visu-
alize our isosurface. We decided to use a standard splatting
approach [PZvBG00]. We perform a kd-tree based nearest
neighbor search and use the least-squares method to derive
the splat’s surface normals and radii. The orientation of the
normal is already determined during isopoint computation.

9. Results and Discussion

We have applied our approach to a sphere data set, which
consists of randomly distributed sample points in a 200 ×
200× 200 cube. The sample values describe the distance to
the center of a sphere. We extract an isosurface from the dis-
tance field using isovalue 70. The generated and rendered
sphere can be seen in Figure 10. The computation times are
shown in Table 1 and have been taken on a PC equipped
with a 3.06GHz XEON processor. When changing the iso-
value, neighborhoods do not need to be recomputed, which
reduces the isopoint computation time to only five seconds
when using 16 million samples.

sample points # isopoints computation time
4M 45K 70 sec
8M 71K 151 sec

12M 100K 243 sec
16M 113K 318 sec

Table 1: Isopoint computation times for sphere data set.

In comparison, the tetrahedrization of the data set using
four million samples with the algorithms provided by CGAL
already lasted 3,266 seconds. Since Delaunay tetrahedriza-
tion has a quadratic asymptotic time complexity, the differ-
ence would be even more significant for larger data sets. Co
et al. [CJ05] state in their paper that their approach using lo-
cal tetrahedrization on a data set with only 346,000 samples
lasted 92 seconds on a cluster with eleven PCs. They did not
apply it to data sets of larger size.

The synthetic sphere data set was also chosen to analyze
the error behavior of our algorithm. More precisely we were
interested how far the generated isopoints lie from the ana-
lytic representation of the isosurface. We compared the max-
imum deviation of the isopoints generated by our algorithm

c© The Eurographics Association 2006.

104

P. Rosenthal & L. Linsen / Direct Isosurface Extraction from Scattered Volume Data

Figure 10: Isosurface with point-based rendering and
Gouraud shading, extracted out of 16M sample points.

with eight million scattered sample points to the one gener-
ated by marching cubes on a regular 200× 200× 200 grid.
For marching cubes we got a deviation of 0.0018 from the
sphere with radius 70. The deviations for our algorithm in
dependence of the angle α used for the angle criterion are
presented in Table 2.

angle α # isopoints deviation
15◦ 437,473 0.0425
35◦ 227,588 0.0355
55◦ 77,512 0.0320
80◦ 64,165 0.0182

Table 2: Deviations for sphere data set.

To show the power of our algorithm in generating smooth
and well-shaped surfaces, we include a ray-traced picture
of two spheres, each generated out of eight million sample
points, in Figure 11. On the right-hand side one can see a
yellow reflecting solid sphere, while on the left-hand side
there is a reflecting lucent sphere made out of glass.

In Figure 12 and Figure 13, we show results of our ap-
proach applied to real data. The first isosurface, shown in
Figure 12, is generated from a resampled regular data set of
size 256× 256× 178. We extracted 243,238 isopoints and
rendered them using small splats to show the good extrac-
tion of the inner and outer border of the teapot. Also smooth
transitions, especially on the spout and the knob, can be ob-
served. In Figure 13, we show the isosurface of an engine.
The regular data set of size 256×256×128 is resampled to
16 million scattered data points. The shown isosurface con-
tains 405,327 isopoints.

Figure 11: Point-based ray tracing of two isosurfaces, gen-
erated from the sphere data set with 8M sample points. (Im-
age courtesy of Karsten Müller.)

Figure 12: Isopoints of Boston Teapot with lobster, ex-
tracted out of 16M sample points. (Data set courtesy of Ter-
arecon Inc, MERL and Brigham and Women’s Hospital.)

10. Conclusions and Future Work

We have presented an isosurface visualization algorithm that
extracts the surface directly from scattered volume data.
No global or local 3D mesh generation or 3D reconstruc-
tion over a regular grid is applied. Our approach consists
of a geometry extraction and a rendering step. The geom-
etry extraction step computes points on the isosurface by
linearly interpolating between neighboring pairs of samples.
The neighbor information is retrieved by partitioning the 3D
domain into cells using a kd-tree. The cells are merely de-
scribed by their index and bitwise index operations allow for
a fast determination of potential neighbors. We use an an-
gle criterion to select appropriate neighbors from the small
set of candidates. The output of the geometry step is a point
cloud representation of the isosurface. The final rendering
step uses point-based rendering techniques to visualize the
point cloud.

We evaluated our approach by applying it to synthetic and
real data. The synthetic data allowed for an exact computa-
tion of the deviation from the analytic surface representation.

c© The Eurographics Association 2006.

105

P. Rosenthal & L. Linsen / Direct Isosurface Extraction from Scattered Volume Data

Figure 13: Engine with point-based rendering out of 16M
sample points. (Data set courtesy of General Electric.)

We observed that our method got very close to what a grid-
ded isosurfacing technique like marching cubes generated.
The computation time of our algorithm was compared to 3D
mesh generation algorithms like Delaunay tetrahedrization.
We observed that we could achieve a speed-up of about one
order of magnitude for the data sets we have been using.

In terms of future work, we would like to improve our ren-
dering engine. Currently, we are only using spherical splats
instead of elliptical ones and we cannot deal with sharp
edges and corners yet.

References
[ABCO∗01] ALEXA M., BEHR J., COHEN-OR D., FLEISHMAN

S., LEVIN D., SILVA C. T.: Point set surfaces. In VIS ’01:
Proceedings of the conference on Visualization ’01 (Washington,
DC, USA, 2001), IEEE Computer Society, pp. 21–28.

[Ben75] BENTLEY J. L.: Multidimensional binary search trees
used for associative searching. Commun. ACM 18, 9 (1975), 509–
517.

[CHJ03] CO C. S., HAMANN B., JOY K. I.: Iso-splatting: A
point-based alternative to isosurface visualization. In Proceed-
ings of the Eleventh Pacific Conference on Computer Graphics
and Applications - Pacific Graphics 2003 (2003), Rokne J., Wang
W.„ Klein R., (Eds.), pp. 325–334.

[CJ05] CO C. S., JOY K. I.: Isosurface Generation for Large-
Scale Scattered Data Visualization. In Proceedings of Vi-
sion, Modeling, and Visualization 2005 (Nov. 16–18 2005),
Greiner G., Hornegger J., Niemann H.„ Stamminger M., (Eds.),
Akademische Verlagsgesellschaft Aka GmbH, pp. 233–240.

[CPJ04] CO C. S., PORUMBESCU S. D., JOY K. I.: Meshless
Isosurface Generation from Multiblock Data. In Proceedings
of VisSym 2004 (May 19–21 2004), Deussen O., Hansen C. D.,
Keim D. A.„ Saupe D., (Eds.), Eurographics.

[FN91] FRANKE R., NIELSON G. M.: Geometric Modeling:
Methods and Applications. Springer Verlag, New York, 1991,
ch. Scattered Data Interpolation: A Tutorial and Survey, pp. 131–
160.

[GH95] GUÉZIEC A., HUMMEL R.: Exploiting triangulated sur-
face extraction using tetrahedral decomposition. IEEE Transac-
tion on Visualization and Computer Graphics 1, 4 (1995), 328–
342.

[JLSW02] JU T., LOSASSO F., SCHAEFER S., WARREN J.: Dual
contouring of hermite data. In Proceedings of the 29th annual
conference on Computer graphics and interactive techniques -
SIGGRAPH 2002 (2002), ACM Press, pp. 339–346.

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes: A
high resolution 3d surface construction algorithm. In Proceed-
ings of the 14th annual conference on Computer graphics and
interactive techniques - SIGGRAPH 1987 (1987), ACM Press,
pp. 163–169.

[Lev03] LEVIN D.: Mesh-independent surface interpolation. In
Geometric Modeling for Scientific Visualization, Brunnett G.,
Hamann B., Müller H.„ Linsen L., (Eds.). Springer-Verlag, 2003,
pp. 37–49.

[Lin01] LINSEN L.: Point cloud representation. Tech. rep.,
Fakultät für Informatik, Universität Karlsruhe, 2001.

[LP01] LINSEN L., PRAUTZSCH H.: Global versus local trian-
gulations. In Proceedings of Eurographics 2001, Short Presenta-
tions (2001), Roberts J., (Ed.).

[LP03] LINSEN L., PRAUTZSCH H.: Fan clouds - an alternative
to meshes. In Geometry, Morphology, and Computational Imag-
ing, Lecture Notes in Computer Science (2616), Proceedings of
11th International Dagstuhl Workshop on Theoretical Founda-
tions of Computer Vision (2003), Asano T., Klette R.„ Ronse C.,
(Eds.), Springer-Verlag.

[LT04] LIVNAT Y., TRICOCHE X.: Interactive point-based iso-
surface extraction. In IEEE Visualization (2004), pp. 457–464.

[Nie93] NIELSON G. M.: Scattered data modeling. IEEE Com-
puter Graphics and Applications 1 (January 1993), 60–70.

[PLK∗05] PARK S., LINSEN L., KREYLOS O., OWENS J. D.,
HAMANN B.: A framework for real-time volume visualiza-
tion of streaming scattered data. In Proceedings of Tenth Inter-
national Fall Workshop on Vision, Modeling, and Visualization
2005 (2005), Stamminger M., Hornegger J., (Eds.), DFG Collab-
orative Research Center, pp. 225–232,507.

[PLK∗06] PARK S. W., LINSEN L., KREYLOS O., OWENS
J. D., HAMANN B.: Discrete Sibson interpolation. IEEE
Transactions on Visualization and Computer Graphics to appear
(2006).

[PZvBG00] PFISTER H., ZWICKER M., VAN BAAR J., GROSS
M.: Surfels: surface elements as rendering primitives. In SIG-
GRAPH ’00: Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques (New York, NY, USA,
2000), ACM Press/Addison-Wesley Publishing Co., pp. 335–
342.

[RL00] RUSINKIEWICZ S., LEVOY M.: QSplat: A multiresolu-
tion point rendering system for large meshes. In Siggraph 2000,
Computer Graphics Proceedings (2000), Akeley K., (Ed.), ACM
Press / ACM SIGGRAPH / Addison Wesley Longman, pp. 343–
352.

[VKSM04] VARADHAN G., KRISHNAN S., SRIRAM T.,
MANOCHA D.: Topology preserving surface extraction using
adaptive subdivision. In SGP ’04: Proceedings of the 2004 Euro-
graphics/ACM SIGGRAPH symposium on Geometry processing
(New York, NY, USA, 2004), ACM Press, pp. 235–244.

[vRLHJ∗04] VON RYMON-LIPINSKI B., HANSSEN N., JANSEN
T., RITTER L., KEEVE E.: Efficient point-based isosurface ex-
ploration using the span-triangle. In IEEE Visualization (2004),
pp. 441–448.

c© The Eurographics Association 2006.

106

