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Abstract A Yang—Mills theory in a purely symplectic framework is developed. The
corresponding Euler-Lagrange equations are derived and first integrals are given.
We relate the results to the work of Bourgeois and Cahen on preferred symplectic
connections.
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1 Introduction

The study of connections in vector resp. principal fiber bundles over manifolds has
been a broad field of research in many contexts over decades. In particular, one is
interested in properties of connections respecting various types of geometries.

In Riemannian geometry, we have the classical result that each Riemannian mani-
fold (M, g) admits a distinguished linear connection, called the Levi—Civita connection.
This connection is characterized by the conditions that it is metric, i.e. g is parallel,
and that its torsion vanishes. More general, for any 2-form ¢ on M with values in the
tangent bundle TM of M, there exists a unique metric connection on (M, g) having ¢
as its torsion.

Turning one’s interest to symplectic geometry, the situation changes drastically.
Namely, if (M, w) is an almost symplectic manifold, then, for a given 2-form ¢ on M
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138 K. Habermann et al.

with values in TM, the space of symplectic connections whose torsion is ¢ is either
empty or an infinite dimensional affine space (see Lemma 2.3). Here, by a symplectic
connection, we mean the analog of a metric connection on a Riemannian manifold.
Accordingly, a symplectic connection on (M, ®) is a linear connection V on M such
that Vo = 0.

By the above, on an almost symplectic manifold, there is no canonical symplectic
connection singled out by any torsion condition, i.e. there is no notion analogous to
the Levi—Civita connection. This fact gives rise to the question whether it is possible
to select a single class of symplectic connections in other ways. In recent years, this
problem has been approached by studying symplectic connections that, in addition
to torsion-freeness, satisfy suitable curvature conditions. For an overview, see [2] and
the references therein. In [4], the authors derived such a condition by a variational
principle using a Lagrangian density with a quadratic polynomial in the curvature. The
connections satisfying the deduced Euler-Lagrange equations are now referred to as
preferred symplectic connections. Unfortunately, aside from the surface case, there
1s not much known about general properties of those connections. Progress has been
made towards understanding so-called symplectic connections of Ricci type, which
are described by a curvature condition that implies the Euler-Lagrange equations of
[4]. But all these studies do not consider possible effects caused by the torsion. It is
generally assumed that all connections taken into consideration are torsion-free.

Itis the aim of the present work to develop an approach that also includes symplec-
tic connections with non-vanishing torsion. Treating symplectic connections without
any torsion obstruction has several advantages and is motivated by the following
aspects.

Also in Riemannian geometry, in spite of the existence of the Levi—Civita connec-
tion, one is more and more interested in connections with torsion. This is due to current
issues in string theory. There one studies different types of metric connections having
good but non-trivial torsion. Here, in most cases, “good” means that the torsion con-
sidered as a covariant 3-tensor field is totally skew-symmetric (see e.g. [1]). Another
point is that dropping the restriction to torsion-free connections allows to take into
account connections that are Hermitian with respect to a compatible almost complex
structure. In general, those connections have non-trivial torsion. On the other hand,
for fixed compatible almost complex structure, there exists a distinguished Hermitian
connection (see [9]). A further reason comes from the theory of symplectic Dirac
operators. The more one studies these operators, the more one becomes convinced
that, at least in this context, certain symplectic connections with torsion are more
suitable than torsion-free connections (see [10]). Moreover, only admitting symplec-
tic connections with torsion makes it possible to extend the considerations to almost
symplectic manifolds (cp. Proposition 2.5).

The approach given here has the advantage that it also works for connections in
vector bundles. Generalizing the ansatz in [4], it gives a purely symplectic Yang—Mills
theory. At this point, we should mention the paper [13]. At first glance, this paper is
closely related to that presented here, and really there are some relations to our work.
However, Urakawa studies the usual Yang-Mills functional, using the symplectic
framework. More precisely, he considers the variation of the integral

/g (RV,RV) o
M
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Symplectic Yang-Mills theory, Ricci tensor, and connections 139

where g is a compatible Riemannian metric on the symplectic manifold (M, ).
Starting from the Kihler case, Urakawa reformulates classical Yang-Mills theory
and investigates it in terms of symplectic geometry, provided that the Riemannian
metric the theory is based on is associated to a symplectic structure on the underlying
manifold. In particular, this approach is not applicable to symplectic connections on a
symplectic manifold without fixing an auxiliary structure. The point of view developed
here is completely different. We present an intrisically symplectic Yang—Mills theory
which directly handles the given symplectic data. The price we have to pay for this is
that the analytic nature of the Yang—Mills functional introduced here is more com-
plicated than that of the functional studied by Urakawa. For example, the Lagrange
density of the second functional is always non-negative, which is not the case for our
one.

Dealing with Yang-Mills theory on an almost symplectic manifold, the so-called
symplectic Ricci tensor comes naturally into play. This tensor field generalizes the
usual Ricci tensor for a torsion-free symplectic connection as well as the *-Ricci
tensor of an almost Hermitian manifold. Furthermore, it has the advantage that the
corresponding endomorphism, called the symplectic Ricci operator, can be defined
also for connections in a vector bundle.

The paper is organized as follows. In the second and third section, we recall some
results on the torsion of metric and symplectic connections and on Ricci tensors,
respectively. In Sect. 4, we introduce two functionals. The first one is the symplectic
analog of the Yang—Mills functional, whereas the second one is defined by the symplec-
tic Ricci operator. We compute their Euler-Lagrange equations and describe how they
are related. In Sect. 5, we discuss first integrals of the symplectic Yang-Mills equation,
which, in dimension 4, are symplectic analogs of the self-duality and anti-self-duality
equation. In the last section, we relate our results to that in [4]. In particular, we give
a proof for the Euler—Lagrange equations of the functionals considered there.

We would like to thank the referee for useful comments.

2 Connections and torsion

In this section, we summarize some well known facts on the torsion of metric and
symplectic connections.

Let M be a smooth manifold. If E is a vector bundle over M, we denote the space
of smooth sections of E by I'(E), the space of smooth k-forms on M with values in E
by Qk(M, E), and the endomorphism bundle of £ by End(E).

Let C(M) be the space of linear connections on M, i.e. of connections in the tangent
bundle TM of M. Then C(M) is an affine space over the vector space Q! (M, End(TM)).
The torsion TV € Q2(M, TM) of a connection V € C(M) is defined by

TV(X,Y) = VyxY — VyX — [X, Y]

for X,Y € I'(TM). Thus the map V € C(M) — TV € Q2(M,TM) is affine and the
associated linear map o : QY M, End(TM)) — Q*(M,TM) is given by

PO)X,Y)=0(X)Y —O8(Y)X.

A connection V € C(M) is called torsion-free if TV = 0.

@ Springer



140 K. Habermann et al.

Let g be a Riemannian metric on M. A metric connection on M is a connection
V € C(M) such that Vg = 0, i.e.

X(g(Y,2)) =g(VxY,Z) +g(Y,VxZ)

for all X,Y,Z € I'(TM). The space C(M,g) of metric connections on M is an affine
subspace of C(M) and its corresponding vector space £!(M,g) is formed by all 6 €
Ql(M,End(TM)) that satisfy

gOX)Y,Z) = —g(0(X)Z,Y). (2.1)

Lemma 2.1 The restriction of ® to E'(M,g) is an isomorphism onto the space
Q> (M, TM).

Proof Let0 € £ LM, g) and suppose that ®(0) = 0, i.e.
0(X)Y =0(Y)X.
By means of Eq. (2.1), we conclude

g8OX)Y,Z) = —g(0(X)Z,Y) = —g(0(H)X,Y) =g(0(2)Y, X)
=g0O(Y)Z,X) =—g0(Y)X,Z2) = —g(0(X)Y,2),

which implies 6 = 0.
Let ¢ € Q2(M,TM) and let 6 € Q'(M,End(TM)) be determined by

2800(X)Y,Z) =g(C(X,Y),Z) +8(((Z,X),Y) +8(t(Z,Y), X).
One readily verifies that 6 € £1(M, g) and that
8OX)Y,Z) —g(0(Y)X,Z) = g(¢((X,Y),2),
which means ®(0) = ¢. O

An immediate consequence is

Corollary 2.2 Themap V € C(M,g) — TV € QX(M,TM)is1: 1. In particular, there is
a unique connection V € C(M, g), called the Levi—-Civita connection, such that TV = 0.

From now on, we suppose that M is endowed with an almost symplectic struc-
ture, i.e. a non-degenerate 2-form w. The form w is called a symplectic structure if in
addition it is closed. A connection V € C(M) is said to be symplectic if Vo = 0, i.e. if

Xw(Y,2)=o(VxY,Z)+w(Y,VxZ)

forall X,Y,Z € I'(TM). We point out that we do not require that a symplectic connec-
tion is torsion-free. The space C(M, w) of symplectic connections on M is again an affine
subspace of C(M) and its vector space & (M, w) consists of all & € QY(M,End(TM))
that satisfy

w@X)Y,Z) =w@(X)Z,Y).

Although a symplectic connection is the analog of a metric connection, the properties
of the torsion maps are completely different (cf. [12]).
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Symplectic Yang-Mills theory, Ricci tensor, and connections 141

Lemma23 (i) Aform6 e EY(M,w) satisfies ®(0) = 0 if and only if the expression
w(O(X)Y, Z) is totally symmetric in X,Y,Z € T'(TM).
(ii) Theimage ® (£1(M,w)) of E1(M, w) under @ is the space of all ¢ € Q*(M, TM)
such that

olX,Y),2)+0w(Y,2),X)+w(i(Z,X),Y)=0. (2.2)

Proof Assertion (i) is obvious. Moreover, it is easy to check that Eq. (2.2) holds true
for any ¢ € @ (€}(M,®)). Finally, suppose that ¢ € Q*(M, TM) satisfies Eq. (2.2) and
let € QY (M, End(TM)) be given by

1
w(X)Y,Z) = g(w(E(X, Y),Z)+w((X,2),Y)).

Then 6 € E'(M,w) and () = ¢. O
Corollary 2.4 Themap V € C(M,w) — TV € Q2(M, TM) is neither injective nor onto.
Moreover, the pre-image {V € C(M,w) : TV = ¢} of a form ¢ € Q*(M,TM) is either
empty or infinite dimensional.

A further difference to the metric case is

Proposition 2.5 There exists a torsion-free symplectic connection V on M if and only
if w is a symplectic structure.

Proof This follows from the following two facts. For any V € C(M, w), we have
do(X,Y,Z) = (TV(X, Y),Z) to (TV(Y, Z),X) to (TV(Z,X), Y) .

If VV € ¢(M) is any torsion-free connection and 6 € Q' (M, End(TM)) is defined by

L o0 0
0OX)Y.2) = (Vo) (.2 + (Vo) (X, 2))
then the connection V = V° + 4 is also torsion-free and

X(w(Y,2)—o(VxY,Z) —w(Y,VxZ) = %dw(X, Y,Z).
O

According to the above, in symplectic geometry, there is no analog of the Levi—-Civita
connection. Furthermore, in the case that w is a symplectic structure, any connection
V € C(M, ) such that w (TV (X, Y), Z) is symmetric or skew-symmetric in Y, Z has
to be torsion-free.

3 Ricci tensors

In the following, let M have dimension 2n and let s = (eq,...,€e2,) be a symplectic
frame on some open subset U C M, i.e. a frame of vector fields on U such that

w(€;,€) = w(enti,€yyj)) =0 and w(e;,€,4)) =5
@ Springer
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fori,j = 1,...,n. Furthermore, let /® be the almost complex structure on U defined
by

Joe; = enqi
fori=1,...,n.

Let V be any connection on M. Its curvature is the form RY € Q*(M,End(TM)) given
by
RY(X,Y)Z =VxVyZ — VyVxZ — Vix v Z. (3.1)

The Ricci tensor of V is the tensor field ricY € I'(T*M ® T*M) defined by

ricV(X,Y) = Tr (Z - RV(Z,X)Y)
_ %w (Rv(el-,X)Y,JSe,-) .
=1

Thus the Ricci tensor ric is obtained by contracting the curvature RV with respect
to the symplectic form w. Following the ideas of Vaisman [14], we consider another
contraction of RY. We define sRicY € I'(End(TM)) by

n
sRicV(X) = ZRV(ei,JSei)X
=1

and call it the symplectic Ricci operator. Moreover, we define the symplectic Ricci
tensor as the tensor field sric¥ € I'(T*M ® T*M) given by

sricV(X,Y) = w (sRicV (X), Y) .

Remark 3.1 1f w is the Kéhler form of an almost Hermitian structure (g,J) and V is
the Levi-Civita connection of g, then sric" is the so-called %-Ricci tensor. See e.g. [15].

The Ricci tensors ricY and sric¥ are related by
Proposition 3.2 IfV € C(M,w), then

sric’ (X, Y) —ric" (X, Y) = o (KV (X). Y) ,

where

KY(X) = i (7% (7" @1, 7%0). X) + (VX TV) (e, /%)
i=1

+ % (TV (TV(X, ei),JSe,-) + (vel. TV) (Jsei,X)) .
=1
Proof LetV € C(M,w). ifhen

» (RV(X, V)7, Zg) _ (RV(X, Y) 2, Zl) . (3.2)

With this, one gets
sricY(X,Y) —ric¥ (X, Y)

n
= > o (RV (/%)X + R¥ (e, X)e; + RV (X, €)%, V).
i=1

@ Springer



Symplectic Yang-Mills theory, Ricci tensor, and connections 143

Now, applying the first Bianchi identity (cf. [11, Chapter 111, Theorem 5.3]), the asser-
tion follows. O
Consequently, for any torsion-free symplectic connection V, the Ricci tensors ricY

and sric¥ coincide. But in general, for a generic symplectic connection, this is not true.

Proposition 3.3 IfV € C(M,w), then
sricV (X, Y) = sric¥ (Y, X)
forany X,Y € I'(TM).

Proof This easily follows from Eq. (3.2). O

By Proposition 3.2, in general, ricV is not symmetric. This, among others, indicates

that the symplectic Ricci tensor sric¥ is more adapted to symplectic geometry than
the usual Ricci tensor ricY. Furthermore, the symplectic Ricci operator sRic¥ can be
straightforwardly generalized to connections V in a vector bundle on M. If E is a
vector bundle on M and V : T'(E) — QY (M, E) is a connection in E, we define the
symplectic Ricci operator sRic¥ € I'(End(E)) of V by

sRic"(§) = > RY(e;,J%)&
i=1

for asection & € ['(E), where the curvature RV € Q%(M,End(E)) is given analogously
to Eq. (3.1) by

RY(X,Y)& = VyVy& — VyVxé — Vix vt

4 Symplectic Yang-Mills functionals

In this section, we generalize the variational principle for symplectic connections
suggested by Bourgeois and Cahen [4] to connections in vector bundles.

We now suppose that the manifold M is closed. Let E be a real vector bundle over
M of rank 2m with an almost symplectic structure, i.e. a non-degenerate 2-form
bel (AZE). Let s = (eq,...,emn) be a local symplectic frame in E and let J* be the
local almost complex structure in E given by

JPei=¢py; for i=1,...,m.
We define pairings
(K,L) € T(End(E)) x T'(End(E)) — b(K, L) € C*(M)
and
(a,B) € Q¥(M,End(E)) x QF¥(M,End(E)) — b(a, B) € C®(M)
by
2m
b(K,L) = b(Ke;, LI%¢)

i=1
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144 K. Habermann et al.

and

b.f)y= D bE,....e,). %, ...J%;)).

1<ij<---<i<2n

Itis easy to see that b(K, L) and b(«, ) do not depend on the choice of the symplectic
frames s and s and that

b(K,L) =b(L,K) and b(x,B) = (—D*b(B,a).

Let C(E) denote the space of connections in E and let C(E,b) be the subspace of
symplectic connections in E, i.e. of connections V € C(E) such that

X(b(&1,8)) =b(Vxé1,86) + b, VxéD)

for all X € I'(TM) and &,& € T'(E). Then C(E) is an affine space over the vector
space QY (M,End(E)) and C(E, b) is an affine subspace over the vector space £ LE,b)
of all € Q'(M,End(E)) that satisfy

b(6(X)&1,62) = b(O(X)&2,61).
The symplectic analog of the Yang-Mills functional is now the functional
L:CEb) >R, L(V)= %/b (RY.RY) ™.
M

Besides this, we consider the functional

L:CED) - R, L(V)= / b (sRicV,sRicV) ™.

M

1
2
Here we have used the abbreviation

1
o® = —ok,

k!

In particular, ™ is the symplectic volume form.
To compute the Euler-Lagrange equations of the functionals /; and />, we need some
preparations. Let QX(M) denote the space of smooth k-forms on M and let

(a,a) € QK(M,End(E)) x Q/(M,End(E)) — b(a A ') € Q5 (M)
be the bilinear map determined by
(KR @) AN(LQVY)) =b(K,L)p Ay

for K,L € I'(End(E)), ¢ € Q¥(M) and (/NS Ql(M). The symplectic analog of the
Riemannian Hodge operator is defined as follows (cf. [5]). The symplectic Hodge
operator is the unique isomorphism  : QK(M,End(E)) — Q!/(M,End(E)) that satis-
fies

b(ar, B) ™ = b(a A *p)

for any o, B € QK(M,End(E)). In the next lemma, we note some properties of this
operator (cf. [8]).

Lemmad.l (i) Foranya € QX(M,End(E)) and any k, it is x(xa) = a.
@ Springer



Symplectic Yang-Mills theory, Ricci tensor, and connections 145

(ii) Forany L € T(End(E)), itis +L = L ® ™.
(iii) Ifa € QY(M,End(E)), then xa = a A 0"V,
(iv) Ifa € Q*(M,End(E)), then

(n—1) (n—2)

o =ao(w) @w —adAw

Here a(w) € I'(End(E)) for & € Q2(M,End(E)) means the section given by
n
a(w) = a(eil%).
i=1

If V is a connection in E, let d¥ : QK(M, End(E)) — Q¥*1(M, End(E)) be the associ-
ated exterior differential and set
8V = (= )14dVx . QKT1(M, End(E)) — QX(M, End(E)).

Then 6V is the formal adjoint of d¥ in the following sense.

Proposition 4.2 Let o € QX(M,End(E)) and B € QY (M,End(E)). Then, for any

V € C(E,b),
/b (dva,,B) o™ = / b (a,SV,B) o™,

M M

Proof One can proceed as in the Riemannian case. Since the connection V is sym-
plectic, we have

d(b( A %B)) =b (dvoz A *,B) + (—Dkb (a A dv*ﬁ) .

Using in addition Stokes’ Theorem and Lemma 4.1(i), we conclude

/b (dva,ﬁ) o™ = / (dva A *,8) o™

M M
_ /d(b(a A #B))™ — (-1)"/ b (a A dv*,B) o™
M M
= (=)t / b (a A **dv*ﬁ) ™
M
— /b (c,878) 0.
M

For the action of 8V on 1-forms, we have (cp. also [5], Sect. 1.2 and Theorem 2.2.1)

Lemma 4.3 Suppose that w is a symplectic structure and let V be any connection in E.
Then

Va = —dVa(w)
for a € Q'(M,End(E)).
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Proof By means of Lemma 4.1, we derive
8V = —xdVxa

= —xd" (a A w("_l))

= —x (dva A w(”_l))

= —x% (dva(a)) ® a)(n))

= —dVa(w).

O

Proposition 4.4 If w is a symplectic structure, then the functionals I and I, differ by a
constant.

Proof We can proceed as in [4], Sect. 2. First we observe that, by Lemma 4.1(iv),
blarB) A2 =b (a A (,3 A w<”—2>))

—b (a A (,3@) ? w<”—1>)) — bl A #8)
= (b(a(w), (@) — b(a, B)) &
for all o, B € Q*(M,End(E)). In particular,

(b (sRicV, sRicV) —b (RV,RV)) o™ = b (RV A RV) A2,

Hence, by dVRY = 0, dw = 0 and Stokes’ Theorem, for V* as in the proof of Theo-
rem 4.5, we have

d
d—t(lz — 1) (V')

= /b (dve A RV) A2

d (b (6 A RV> A a)(”_z))

I
S R ¥

Now we can prove

Theorem 4.5 (i) A connection V € C(E,b) is a critical point of the functional Iy if
and only if dVsRY = 0.
(ii) In case w is a symplectic structure, a connection V € C(E,Db) is a critical point of
the functional I if and only if VsRicY = 0. Moreover, in this case, the Euler—
Lagrange equations of Iy and I, are equivalent.

Proof Let 6 € E'(E,b) and let V! be a smooth curve in C(E,b) with V? = V and
d vf

— = 0.
dr | _p
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Then, as is well known,

d RV

=dVe.
dr

=0

Thus, by means of Proposition 4.2, we get

d » — / b (dVQ,RV) o™ = / b (Q,SVRV) o™

- t
71 v
M M

Since §VRY e £1(E,b) because of the symplecticity of V and since also the restriction
of b to £1(E, b) is non-degenerate, Assertion (i) follows.

Now we suppose that w is a symplectic structure. Then we can apply Lemma 4.3 to
obtain

d . d o
—sRicY = —RV(w)| =dv9(w)=-8"6.
de o dr —0
Hence
d
—L(V)| =- / b (576,5Ric”) ™ = — / b (6, VsRicY) ™.
dr -0
M M

Since also VsRicY € £!(E,b), this gives the first part of Assertion (ii). The second
part is a consequence of Proposition 4.4. Alternatively, it follows from

dVxRY =4V (Rv(a)) R w™ V) RV A a)(”_z))
—qv (sRicV ® a)("_l)) —d"RY A 0™ _ RY A de®2

= VsRic¥ A 0"V
= xVsRicV ,
where we have used again Lemma 4.1 and the Bianchi identity d¥RY = 0. O
Remark 4.6 (i) One can proceed analogously if £ is endowed with a Riemannian
structure or if E is a complex vector bundle with a Hermitian structure.
(i) In the considered situation, sRicV = X idg for some A € R implies sRic¥ = 0.
However, if E is a Hermitian vector bundle, it may be interesting to study the

analog of the Hermitian Yang—Mills equation.
(iii) Torsion-free symplectic connections with VsRic¥ = 0 are investigated in [3,7].

5 First integrals

In the case that M is 4-dimensional, one can ask for self-dual and anti-self-dual solu-
tions of the symplectic Yang—Mills equation

dV«RY =0, (5.1)
i.e. for connections V € C(E,b) such that

«RY = RV (5:2)
@ Springer
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and
*RY = —RY | (5.3)

respectively.

Proposition 5.1 Ifdim M = 4, then
(i) *RY =RV if and only
1
RV = E SI{iCV R w.
(i) *RY = —RY ifand only if sRic¥ = 0.
Proof This follows from
*RY = sRic¥ ® w — R.
O
The self-duality equation (5.2) as well as the anti-self-duality equation (5.3) pos-
sess generalizations to arbitrary dimensions. For the second equation, this is obvious.

Namely, by Proposition 5.1, Eq. (5.3) can be generalized by sRic¥ = 0. Concerning
the self-duality equation, observe that

1
RY = - sRic¥ ® o (5.4)

is equivalent to the existence of an endomorphism L € I'(End(E)) such that RV =
L ® w. Therefore, Eq. (5.4) generalizes Eq. (5.2).

Lemma5.2 (i) Ifn =1, then RV =sRic¥ ® w for any connection V € C(E).
(i) Ifn =2, then Eq. (5.4) is equivalent to

1

RY =
¥ n—1

RY A2, (5.5)

(iii) [Iris sRicY = 0 if and only if
*RY = =RV A "2, (5.6)

Proof The first assertion is trivial. To see the second assertion, suppose that n > 2
and assume first that Eq. (5.5) holds true. Since

*RY = sRic¥ @ "V — RV A 02 (5.7)
by Lemma 4.1(iv), this implies
sRic¥ @ o™V = nxRY

which is equivalent to Eq. (5.4). The converse can be derived straightforwardly. Asser-
tion (iii) is an easy consequence of Eq. (5.7). O

Corollary 5.3 In case w is a symplectic structure, any connection V € C(E) such that
sRicY = 0 is a solution of Eq. (5.1). If. in addition, n > 2, the same holds true for any
connection V € C(E) that solves Eq. (5.4).

Proof This follows from the Bianchi identity d¥RY = 0 and Lemma 5.2. O
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Symplectic Yang-Mills theory, Ricci tensor, and connections 149

Example 5.4 We consider the complex projective space CP" endowed with the
Fubini-Study symplectic structure

. n
1 — -
WFS = 77 > (DS — Zrzpdzg A dzy

k=1
where
D=1+|z1>+- +lz,
and zy = Ty /Ty for k = 1,...,nin homogeneous coordinates [Ty : - -- : T,]. Let O be

the Hopf bundle, i.e. the U(1)-principal bundle §**+! c ¢+ with U(1)-action
((To, ..., Tn), 1) € ST 5 U) = (Tor, ..., Tyd) € S7
and projection
(To,...,Ty) € S s [To:---: Tyl € CP.
Then the 1-form

n

1 _ _
Z=3 ;} (TydTy — TidTy)

on §2"*1 is a connection in Q whose curvature, considered as a 2-form on CP" with
values in Ri, is
F? = —j ws. (5.8)

Now let = : U(1) — Sp(m,R) be any homomorphism into the symplectic group
Sp(m,R) of the vector space R?" equipped with its standard symplectic structure wy.
Let E be the real vector bundle Q x, R?" associated to Q by means of the represen-
tation 7 and let b be the almost symplectic structure in E induced by wq. Then the
connection VZ in E induced by Z lies in the space C(E,b), and Eq. (5.8) implies that
it solves the generalized self-duality equation, i.e.

1
RV — - sRicY” ® wrs.

Examples of torsion-free symplectic connections V that satisfy sRic¥ = 0 are con-
structed in [6].

In order to get a better feeling in handling symplectic connections, in particular
symplectic connections with torsion, it is important to examine further classes of
examples. There is ample room for future research to build on this study’s beginning.

6 Preferred symplectic connections

The aim of this section is to relate the considerations of the previous two sections
to the original variational principle suggested by Bourgeois and Cahen. For this, we
suppose that w is a symplectic structure on M. Let Co(M,w) denote the space of
torsion-free symplectic connections. According to Lemma 2.3 and Proposition 2.5,
Co(M, w) is an affine space over the vector space 5& (M, w) of all 0 € QL (M,End(TM))
such that w (6(X)Y, Z) is totally symmetricin X, Y, Z € I'(TM). Let Iy : Co(M,w) — R
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be the restriction of the functional I, for the case E = TM to the subspace Co(M, ).
The critical points of the functional /j are called preferred symplectic connections
(ct. [2,7]).

Theorem 6.1 [4] A connection V € Co(M,w) is a critical point of the functional Iy if
and only if

(szricv) (Y.Z) + (Vysricv) (Z,X) + (stricv) (X,Y)=0
forall X,Y,Z € T'(TM).

For completeness and since, as it seems to us, there is no proof of this result in the
literature, we will give a proof of it here.

Let o : Q'(M,End(TM)) — Q'(M,End(TM)) be the Bianchi projector. That
means that o (9) for 6 € Q'(M,End(TM)) is given by

w(@@)(X)Y,Z) = % (@OX)Y,Z2) +0O(Y)Z,X) +w(@(£)X,Y)).
One easily checks
Lemma 6.2 For any 6;,6, € Q' (M,End(TM)),
w(0(01),62) = w(01,0(62)).
Furthermore, we have
Lemma 6.3 It is £} (M, ) = o (£1(M, w)).

Proof A direct calculation shows that o (8 Lm, a))) C E1(M, w). Therefore the asser-
tion is an easy consequence of 02 = ¢ and

M0 =0 e ' M 0):00) =6}
O

Proof of Theorem 6.1 According to the proof of Theorem 4.5, a connection V €
Co(M, w) is a critical point of [ if and only if

/a) (0, VSRin) o™ =0
M
forallo e 5& (M, ). By Lemma 6.3, the last condition is equivalent to
/ " (a ), VSRicV) o™ =0
M
for all @ € E1(M, w). By Lemma 6.2, this is the same as

/a) (9,0 (VSRiCV)) o™ =0

M
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for all 0 € &! (M, ). Since VsRicV e el (M, w), we obtain that V € Co(M,w) is a
critical point of [ if and only if

o (VsRic") =0,
which, because of
o ((VxsRic") v, 2) = (Vxsric¥) (v, 2),
is the desired relation. o

Remark 6.4 The condition for a connection V € Co(M, w) to be preferred can also be
expressed as

o (5VRV) =0,
since VsRicY = 8VRY as shown in the proof of Theorem 4.5.
We conclude with the following observation.

Proposition 6.5 Let n > 2. Then any torsion-free connection V € C(M) that solves
Eq. (5.4) has to be flat.

Proof Let V € C(M) be a torsion-free solution of Eq. (5.4). Then, by the first Bianchi
identity, we have

n
0= (R"(e:/%)X + RV (I°e;, X)e; + R¥ (X, €))%
i=1
1 n
o Z (a)(ei,JSei)sRicV (X) + w(J%e;, X)sRicY (&) + w (X, e;)sRic” (Jsei))
=1

_ 1 (n sRicY(X) + sRicY (Z(a) (J%e;, X)e; — a)(e,-,X)JSe,-)))
n =1

1
=TT RicV (),
n

which yields sRicY = 0. Thus, by Lemma 5.2, the connection V satisfies Eq. (5.5) as
well as Eq. (5.6), and this implies RV = 0. O
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