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Abstract—We derive formulas suitable for computing the L2

norm of the error inflicted on an attribute field by merging
a given SPH particle subset into one given aggregate particle,
applicable to any polynomial spline kernel function. Based on
this analysis, we present an algorithm to efficiently compute this
error measure. Furthermore, we provide a method for computing
optimal attributes for an aggregate particle for a given set
of children to be merged. Our method can be applied when
constructing paritlce-based multi-resolution hierarchies, which
provide representations of SPH data at different levels of detail.
They allow for reduced computational complexity, for example,
when applying visualization algorithms.

I. INTRODUCTION

Scientists performing particle simulations request visual-
ization techniques that are accurate and produce meaningful
images but which at the same time can cope with today’s larger
data sets. In order to provide good and quick insights into
simulation data, visualization must be scalable and manage the
trade-off between fast and accurate rendering. Although many
techniques for visualizing SPH data have been developed, they
are either not directly applicable to large data sets or include
a multi-resolution structure that cannot be applied to other
visualization methods.

In contrast, particle-based hierarchies can serve as multi-
purpose multi-resolution structures. A particle-based multi-
resolution hierarchy is a tree of SPH particles. Each non-leaf
particle is an aggregate of its children, serving as a more coarse
replacement for them, while the leaves are the particles of the
original data set, constituting the finest possible representation
of the data. From such a hierarchy, an approximating represen-
tation of the data can be selected, i. e., a set of particles such
that every original particle is either present or represented by
exactly one of its ancestors.

While preserving the strongly varying particle resolution
found in many SPH data sets well, particle-based hierarchies
are especially unique in that any data representation chosen
from it is itself a plain SPH data set and can therefore be
visualized using any conventional single-resolution visualiza-
tion method. While some of these methods require a pre-
computation phase before being able to provide an interactive
user experience, many may still be adaptable to work on a
particle-based hierarchy. This may facilitate a straightforward

enhancement of these methods to cope with large data sets.
Moreover, one precomputed multi-resolution hierarchy could
serve for, say, volume rendering and isosurface extraction of
large SPH data sets, which could even be performed simulta-
neously to allow fast switching between or a combination of
the two methods.

In this article, we present a solution to a fundamental
problem which occurs when constructing particle-based multi-
resolution hierarchies. We define a measure for the change
inflicted on attribute fields when a subset of particles is merged
into a single aggregate particle and present an algorithm to
compute it efficiently. Based on this error measure, we show
how to find error-minimizing attributes for aggregate particles.

We provide an exact definition of the problem in Section III,
introducing the necessary notation. Section IV is dedicated
to the fundamental concept of our approach, introducing the
kernel product integral, its analytic solution, and a method
for computing it efficiently, enabling a fast computation of
the error. In Section V we lay out a method for finding
optimal attributes for aggregate particles while in Section VI
we present some results and comment on the performance of
our algorithms. We conclude the article with a short summary
in Section VII and provide some ideas for future work based
on the presented methods.

II. RELATED WORK

There is a large variety of different approaches for visualiz-
ing particle data. Many application scientists basically rely on
displaying the particles as color-coded points or spheres [1],
[2]. Similarly prevalent is the use of cutting planes or intensity
integration. A well-known tool in the SPH community for
such standard tasks is SPLASH [3]. All of these (often self-
implemented) tools allow to gain a raw impression of the
simulated data and to draw first conclusions. However, they
are mostly limited to visualizing only one of the simulated
variables and complex relations are hard to discover.

One direction for effective visualization of scalar variables is
isosurface extraction. Many approaches rely on sampling the
particle data to an auxiliary regular grid and using standard
isosurface extraction techniques [4], [5]. However, using an
intermediate grid always introduces the loss of adaptivity of
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the original particle data. This is circumvented by Rosenthal
et al. [6], [7] by directly extracting isosurfaces from any point-
based volume data. In addition, level sets can be used to
improve the quality of the extracted surfaces in presence of
highly varying particle density [8], [9]. Although implemented
as narrow-band method, this approach is computationally
intense and only manages to visualize relatively small data
sets.

Large data sets have been visualized using view-dependent
visualization approaches. Cha et al. [10] use photon tracing
on the GPU for visualizing clouds simulated with SPH. A
consequent advancement is the well-known approach of direct
volume rendering, which has proven to generate high-quality
renderings of regular data at interactive rates [11]–[13]. Such
volume rendering approaches have also been applied to parti-
cle data. Kaehler et al. [14] visualize dark matter simulations
by partitioning the domain in tetrahedral cells and ray-casting
the data on the GPU. A direct volume rendering approach
for SPH data is proposed by Jang et al. [15]. The authors
utilize hierarchical space partitioning to efficiently estimate
the volume of influence for each particle.

Level-of-detail algorithms have a long tradition in computer
graphics [16], [17]. The main idea of utilizing different levels
of abstraction for differently important parts of the data
domain is also frequently used in large-scale visualization
approaches, like for vector fields [18], isosurfaces [19], or for
volume rendering [20]. Fraedrich et al. [21] propose a visually
continuous LOD representation for SPH data. Particles are
stored at discrete levels of detail in an octree. The coordinates
of each particle are quantized to the respective cell’s center and
the domains of influence of two cells are merged if the radii do
not differ too much. Afterwards, rendering is done by simply
applying a transfer function to projected and accumulated
particles. The same multiresolution structure is extended by
Fraedrich et al. [22] to a volume rendering pipeline for
SPH data using a regular perspective grid. However, these
methods can hardly be applied to geometry-based visualization
approaches like isosurface extraction or level sets. In contrast,
particle-based hierarchies proposed by us allow the application
of any SPH visualization technique.

SPH particle merging and splitting to regulate spatial res-
olution are well-established concepts in the field of SPH
simulations. For example, Feldman and Bonet [23] propose
a method for splitting particles in critical regions to enhance
the accuracy of SPH simulations. Xiong et al. [24] recently
presented an approach for interactively splitting and merging
particles. Designed to facilitate good simulation results and
to be extremely fast to compute, the merging schemes used
in this context rely on simple averaging of particle attributes.
Using such an approach for the visualization of a data field can
introduce severe errors, which is also true for the adaptive SPH
methods used in fluid simulations for computer graphics [25].

To the best of our knowledge, there exists no hierarchical
method for SPH data which combines the flexibility of using
particles as LOD primitives with the accuracy of an attribute-

aware error metric. By facilitating the design of such methods,
our algorithms fill a considerable portion of this gap.

III. PROBLEM FORMULATION

An SPH data set consists of particles pi, i ∈ I, where each
particle is a tuple

p = (p,µ,ρ,ζ ,α1, . . . ,αu,b1, . . . ,bv) ∈ R3×R3
+×Ru×R3v.

Here, the different attributes denote the particle’s position
p, mass µ , density ρ , radius of influence ζ , additional
scalar values α j, j = 1, . . . ,u, and additional vector values
b j =

(
β j1,β j2,β j3

)
, j = 1, . . . ,v.

A. SPH interpolation

The set of particles induces for each additional attribute a
continuous field over R3 via the following construction. For
every particle p we define its weight function W : R3→ [0,∞)
by

W (x) =
µω (x)

ρζ 3 , ω (x) = w
(‖x−p‖

ζ

)
,

where 1
ζ 3 w

(
‖x−p‖

ζ

)
is an SPH kernel function defined by some

continuous polynomial spline w : [0,∞) → [0,∞) of degree
D with compact support and rational subdomain endpoints
q0, . . . ,qn, 0 = q0 < · · ·< qn, i. e.,

w(q) =

{
wk (q) q ∈ [qk−1,qk) for some k ∈ {1, . . . ,n}
0 q≥ qn,

where wk (q) = ∑D
d=0 wkdqd .

As an example, we will use the broadly applied cubic kernel
function [26] with two nontrivial pieces, defined by

w(q) =
1

4π


(2−q)3−4(1−q)3 , 0≤ q < 1
(2−q)3 , 1≤ q < 2
0, 2≤ q .

(1)

However, since our method is applicable to any kernel
function meeting the above requirements, we will continue
our explanation using general terms.

Having defined a particle’s weight, we can explicitly formu-
late the SPH interpolation defining any scalar or vector field
α as

α (x) = ∑
i∈I

αiWi (x) = ∑
i∈I

αiµiωi (x)
ρiζ 3

i
,ωi (x) = w

(‖x−pi‖
ζi

)
.

B. Particle Merging

Given an SPH data set, we aim to merge some
subset {pi, i ∈M} ,M ⊆ I, |M| ≥ 2 of it, i. e., replace
these particles by just one single aggregate particle p̄ =(
p̄, µ̄, ρ̄, ζ̄ , ᾱ1, . . . , ᾱu, b̄1, . . . , b̄v

)
. This generally changes all

of the scalar and vector fields. For every field α we define the
error induced by the merge as the L2 norm of the difference
between the field and its “changed version”, i. e.,

Eα =

√√√√√ˆ
R3

∥∥∥∥∥ᾱW̄ (x)−∑
i∈M

αiWi (x)

∥∥∥∥∥
2

d3x.
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Note that, while a field α is defined by the corresponding
attribute data of all particles, the error Eα induced to this field
by a merge depends only on the merged particles and the new
aggregate particle p̄. In a simplified manner, Fig. 1 depicts the
meaning of the merge error.

We have now introduced all the necessary terms for stating
precisely the problems we propose to solve:
• Given any particle subset {pi, i ∈M} and an arbitrarily

defined aggregate particle p̄ for this subset, compute the
errors induced by the merge to the attribute fields.

• Given any particle subset {pi, i ∈M}, compute a suitable
aggregate particle p̄ for merging the particles, minimizing
the errors in the attribute fields.

IV. THE KERNEL PRODUCT INTEGRAL

For any scalar field α we can express the square of its merge
error as

E2
α =

ˆ

R3

(
ᾱW̄ (x)−∑

i∈M
αiWi (x)

)2

d3x

= ᾱ2
ˆ

R3

(W̄ (x))2 d3x−2 ∑
i∈M

ᾱαi

ˆ

R3

W̄ (x)Wi (x) d3x

+ ∑
i∈M

∑
j∈M

αiα j

ˆ

R3

Wi (x)Wj (x) d3x. (2)

Note that, while the integral is defined over volume
regions with more than two particles contributing, we can
express it in terms of integrals affected by only two particles
each, i. e., we can easily compute it if we know how to
compute the integral ´

R3
ωi (x)ω j (x) d3x (3)

for any two particles pi and p j, which we call the kernel
product integral in the following.

A. Solution

For computing (3), we can assume w.l.o.g. that i = 1 and
j = 2 as well as p1 = (0,0,0) and p2 = (0,0,∆) where ∆ is
the distance between the two particles’ positions. This can
be achieved from any particle positions without changing the
value of the integral by applying a translation and a rotation.
Therefore, the kernel product integral is only a function of the
positional distance ∆ and the particles’ radii ζ1 and ζ2. Thus
we can write

P = P(∆,ζ1,ζ2) =
´
R3

ω1 (x)ω2 (x) d3x. (4)

To arrive at a closed form solution of the integral
(4), we transform x = (x,y,z) into spherical coordinates
(r,τ,θ) =

(√
x2+y2+z2,arccos

( z
r

)
,arctan

( y
x

))
such that

P =
∞́

r=0

π́

τ=0

2π́

θ=0
ω1 (r,τ,θ)ω2 (r,τ,θ) · r2 sinτ dθ dτ dr

=
∞́

r=0

1́

t=−1

2π́

θ=0
ω1 (r, t,θ)ω2 (r, t,θ) · r2 dθ dt dr

after substituting t = cosτ .

(a)

(b)

Fig. 1. Illustration of particle merging.
(a) Two-dimensional visualization of three particles selected for merging (red,
green, and blue circle) into an aggregate particle (black circle). While a scalar
SPH attribute field is defined at any point in three-dimensional space, we only
illustrate its graph on the straight dashed gray line:
(b) The graphs of the contributions of the three particles (red, green, and
blue). Replacing the particles by the aggregate particles changes the sum
of the particles’ contributions (gray) to the aggregate particle’s contribution
(black). Just like the L2 norm in R3, the area between these two graphs (shaded
region) is a measure for the merge error in one dimension.

We know that ωk (r, t,θ) = w
(

δk(r,t,θ)
ζk

)
for any particle pk,

where δk (r, t,θ) denotes the Euclidean distance between point
(r, t,θ) and the particle’s position pk. Clearly, δ1 (r, t,θ) =
δ1 (r) = r and δ2 (r, t,θ) = δ2 (r, t) =

√
r2 +∆2−2∆rt, hence

P =

 2πˆ

0

dθ

 ∞̂

0

w
(

δ1 (r)
ζ1

) 1ˆ

−1

r2w
(

δ2 (r, t)
ζ2

)
dt

 dr

= 2π
n

∑
k=1

qkζ1ˆ

qk−1ζ1

wk

(
r

ζ1

)
f (r) dr (5)

where f (r) is the bracketed integral from the line above, i. e.,

f (r) =
n

∑
l=1

fl (r) , fl (r) = r2
ˆ

Tl(r)

wl

(√
r2+∆2−2∆rt

ζ2

)
dt,

and Tl (r) ⊆ [−1,1] is the set of t for which wl

(
δ2(r,t)

ζ2

)
is

defined, i. e.,

Tl (r) = [−1,1]∩
{

t : ql−1ζ2 ≤
√

r2 +∆2−2∆rt ≤ qlζ2

}
= [−1,1]∩

[
r2+∆2−q2

l ζ 2
2

2∆r ,
r2+∆2−q2

l−1ζ 2
2

2∆r

]
.
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One can easily verify that the indefinite integral is

r2
ˆ

wl

(√
r2+∆2−2∆rt

ζ2

)
dt

= r2
D

∑
d=0

wld

ζ d
2

ˆ (
r2 +∆2−2∆rt

) d
2 dt

= − r
∆

D

∑
d=0

wld

(d +2)ζ d
2

(
r2 +∆2−2∆rt

) d+2
2 ,

hence, for any fixed r and index l we can solve fl (r) depending
on the endpoints of Tl (r), i. e., as in one of these cases:

1) qlζ2 ≤ |∆− r| or ∆+ r ≤ ql−1ζ2.
Then Tl (r) = /0, implying fl (r) = 0.

2) ql−1ζ2 ≤ |∆− r| ≤ qlζ2 ≤ ∆+ r.

Then Tl (r) =
[

r2+∆2−q2
l ζ 2

2
2∆r ,1

]
, implying

fl (r) =
rζ 2

2
∆

D

∑
d=0

wld

d +2

(
qd+2

l −
(
|∆−r|

ζ2

)d+2
)
.

3) |∆− r| ≤ ql−1ζ2 ≤ ∆+ r ≤ qlζ2.

Then Tl (r) =
[
−1,

r2+∆2−q2
l−1ζ 2

2
2∆r

]
, implying

fl (r) =
rζ 2

2
∆

D

∑
d=0

wld

d +2

((
∆+r
ζ2

)d+2
−qd+2

l−1

)
.

4) ql−1ζ2 ≤ |∆− r| ≤ ∆+ r ≤ qlζ2.
Then Tl (r) = [−1,1], implying

fl (r) =
rζ 2

2
∆

D

∑
d=0

wld

d +2

((
∆+r
ζ2

)d+2
−
(
|∆−r|

ζ2

)d+2
)
.

5) |∆− r| ≤ ql−1ζ2 ≤ qlζ2 ≤ ∆+ r.

Then Tl (r) =
[

r2+∆2−q2
l ζ 2

2
2∆r ,

r2+∆2−q2
l−1ζ 2

2
2∆r

]
, implying

fl (r) =
rζ 2

2
∆

D

∑
d=0

wld

d +2

(
qd+2

l −qd+2
l−1

)
.

Cubic Kernel Example: As an example we apply the above
to the case of the cubic spline kernel (1). The kernel is defined
by n = 2, q0 = 0, q1 = 1, q2 = 2, w1 (q) = 1

4π
(
3q3−6q2 +4

)
,

and w2 (q) = 1
4π
(
−q3 +6q2−12q+8

)
. Hence, the kernel

product integral can be computed according to

P = 1
2

ζ1´
0

(
3 r3

ζ 3
1
−6 r2

ζ 2
1
+4
)

f (r) dr+ 1
2

2ζ1´
ζ1

(
− r3

ζ 3
1
+6 r2

ζ 2
1
−12 r

ζ1
+8
)

f (r) dr

where, abbreviating κ = ∆+r
ζ2

and λ = |∆−r|
ζ2

,

f (r) = rζ 2
2

4π∆



0, 2ζ2 ≤ |∆− r|
4
(
4−λ 2

)
−4
(
8−λ 3

)
+ 3

2

(
16−λ 4

)
− 1

5

(
32−λ 5

)
, ζ2 ≤ |∆− r| ≤ 2ζ2 ≤ ∆+ r

4
(
κ2−λ 2

)
−4
(
κ3−λ 3

)
+ 3

2

(
κ4−λ 4

)
− 1

5

(
κ5−λ 5

)
, ζ2 ≤ |∆− r| ≤ ∆+ r ≤ 2ζ2

3
10 +2

(
1−λ 2

)
− 3

2

(
1−λ 4

)
+ 3

5

(
1−λ 5

)
, |∆− r| ≤ ζ2 ≤ 2ζ2 ≤ ∆+ r

4
(
κ2−1

)
−4
(
κ3−1

)
+ 3

2

(
κ4−1

)
− 1

5

(
κ5−1

)
+ 2

(
1−λ 2

)
− 3

2

(
1−λ 4

)
+ 3

5

(
1−λ 5

)
, |∆− r| ≤ ζ2 ≤ ∆+ r ≤ 2ζ2

2
(
κ2−λ 2

)
− 3

2

(
κ4−λ 4

)
+ 3

5

(
κ5−λ 5

)
, ∆+ r ≤ ζ2

B. Look-up Table

These formulas provide a legitimate way of computing the
kernel product integral by first computing the coefficients of
all pieces of f (r), which is a continuous piecewise polynomial
with degree smaller than or equal to D+ 3, with coefficient
switches at the elements of

⋃
l=0,...,n {∆+qlζ2, |∆−qlζ2|}.

One could then compute the coefficients of the products
wk

(
r

ζ1

)
f (r) for k = 1, . . . ,n, each of which again is a con-

tinuous piecewise polynomial whose integral could then be
computed as the sum of the integrals of its pieces. Finally, the
values of these integrals could be summed up and multiplied
by 2π obtaining the kernel product integral according to (5).

However, in order to speed up the process of computing P
we do not carry out the integrations for each triple (∆,ζ1,ζ2)
but compute a coefficient representation of P(∆,ζ1,ζ2) during
a precomputation step which has to be performed only once for
a specified SPH kernel. We can then use this representation
to efficiently evaluate P at any (∆,ζ1,ζ2). As it turns out,
the kernel product integral P is a piecewise trivariate Laurent
polynomial. “Laurent polynomial” means that negative expo-
nents may appear in its monomials. Its powers only appear
in products ∆aζ b

1 ζ c
2 (multiplied by a coefficient) satisfying

a + b + c = 3 as well as a ∈ {−1, . . . ,2D+3} and b,c ∈
{−D, . . . ,0,2, . . . ,D+4}. This means that for every piece of P
the number of coefficients to be precomputed does not exceed
2D2 +9D+8.

The coefficients of P change at all points (∆,ζ1,ζ2) where
∆ = qiζ1 +q jζ2 or ∆ =

∣∣qiζ1−q jζ2
∣∣ for any indices i and j.

For the case of the cubic kernel (1) these points are plotted in
Fig. 2. To facilitate the selection of the correct piece (i. e., the
right coefficients set) of P, we first partition its domain into
intervals for ∆

ζ2
≥ 0 in which the subdomain border functions

for ζ1 evaluate to a fixed (ascending) order. In other words,
we seek the ∆

ζ2
for which at least two of the border lines in

Fig. 2 cross. They can be computed as the elements of the set

G =
⋃

a=1,...,n
b=1,...,a

c,d=0,...,n

{
qaqd+qbqc

qa+qb
,
|qaqd−qbqc|

qa+qb

}
∪

⋃
a=2,...,n

b=1,...,a−1
c,d=0,...,n

{
qaqd+qbqc

qa−qb
,
|qaqd−qbqc|

qa−qb

}
.

Their number |G| not only depends on n but also on the values
qk. For instance, for a kernel with two pieces (n = 2) with
q1 = 1, and q2 = 2 (as is the case for the cubic kernel (1) and
depicted in Fig. 2 and 3), G = {0, 1

3 ,
1
2 ,

2
3 ,1,

4
3 ,

3
2 ,

5
3 ,2,3,4,5,6}

has 13 (distinct) elements, whereas, say, for q1 = 2 and
q2 = 7 one would get |G| = 23. Therefore, computing the
elements of G ought to be done using rational arithmetic
to prevent roundup errors from producing logic ones. After
computing the elements of G we sort them, naming them
gk, k = 0, . . . , |G| − 1 such that 0 = g0 < · · · < g|G|−1. Let
Γk = [gk−1,gk) for k = 1, . . . , |G| − 1 and Γ|G| =

[
g|G|−1,∞

)
denote the right-open intervals bounded by the gk.

Each of the cases ∆
ζ2
∈ Γk,k = 1, . . . , |G| can then be divided

into subcases for which the coefficients of P stay fixed. We
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do this by sorting the elements of the corresponding set

Hk = {0}∪
⋃

i=1,...,n
j=0,...,n

q jζ2 +∆
qi

∣∣∣∣∣ ∆
ζ2
∈Γk

,

∣∣q jζ2−∆
∣∣

qi

∣∣∣∣∣ ∆
ζ2
∈Γk


of linear border functions of ∆ and ζ2 restricted to the interval
Γk for ∆

ζ2
. Hk always has |H| = 2n2 + n + 1 elements. In

analogy to G, we identify the sorted elements of Hk by hl ,
l = 0, . . . , |H|−1, 0 = h0 ≤ ·· · ≤ h|H|−1. An example ordering
for k = 9, Γk = [2,3) can be seen in the yellow shaded area
in Fig. 2.

This nested partitioning scheme for the domain of P allows
us to save the coefficients of all pieces of P in a two-stage look-
up table. The table contains the “keys” gk and is organized in
subtables, each of which corresponds to one of the intervals
Γk. Each subtable consists of the two coefficients of the
already sorted keys hl(∆,ζ2) and—for each of the intervals
[hl−1,hl) , l = 1, . . . , |H| − 1 and

[
h|H|−1,∞

)
—the coefficients

of the corresponding piece of P.
This layout may seem improvable because we save the same

coefficients sets several times. For instance, in case of the
cubic kernel the 7th section of the first four subtables contains
the same coefficients (gray shaded area in Fig. 2). However,
this drawback is negligible as it does not affect the speed of the
selection and evaluation algorithm after the table set-up phase,
and the total number |G|

[
1+
(
2n2 +n+1

)(
2D2 +9D+10

)]
of floating point values for the table fits easily into RAM for
common kernels. In the example case of the cubic kernel (1)
using double precision floating point values, the table has a
size of 63,024 bytes.

Once the table has been computed, an evaluation of P at a
triple (∆,ζ1,ζ2) reduces to

1) Select the subtable corresponding to the interval Γk that
includes ∆

ζ2
.

2) Evaluate the elements hl of Hk at ∆ and ζ2. Their
coefficients are given in the subtable.

3) From the subtable, select the coefficients set of P that
corresponds to the interval [hl−1,hl) or

[
h|H|−1,∞

)
in-

cluding ζ1.
4) Evaluate the trivariate Laurent polynomial defined by

these coefficients at (∆,ζ1,ζ2).
In the special case of p1 = p2, we do not need the look-up
table to compute P. Instead, during the precomputation phase,
we calculate

K = 4π
qn´
0
[r w(r)]2 dr, (6)

which is a constant only depending on the kernel, and
then use it in computing the “kernel square integral”
according to P(0,ζ1,ζ1) = ζ 3

1 K.
While the table can be used to efficiently compute the kernel

product integral for any values ∆, ζ1, and ζ2 as just explained,
we can also use it for retrieving the subdomain endpoints and
coefficients of any univariate piecewise Laurent polynomial
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Fig. 2. Subdomain borders of P(∆,ζ1,ζ2) for the case n = 2,q1 = 1,q2 = 2.
The coefficients of the continuous piecewise Laurent polynomial function P
change at the lines plotted in green and blue. Within the polygons bounded by
these (e. g., the gray shaede area), the coefficients are constant. The elements
of G are the abscissa coordinates of the intersection points depicted as red
dots, i. e., the values for ∆

ζ2
at which the order of the subdomain border lines

changes. For instance, for ∆
ζ2
∈ Γ9 = [2,3) (yellow shaded area), this order is

illustrated by the labels hi.

∆
ζ2

0 1 2

(a) 5
3 ∈ G

∆
ζ2

10 2

(b) 5 ∈ G

Fig. 3. The elements of G for n = 2, q1 = 1, q2 = 2, depicted as dots on the
axis. The kernel coefficients for particle p2 change at the “shells” depicted
in gray. ∆

ζ2
∈ G if and only if there is a radius ζ1 > 0 for the “blue” particle

p1, such that there are two concurrent tangential shell-shell or shell-center
contacts.
(a) The reason for 5

3 being an element of G: For ζ1
ζ2

= 1
3 , the shell for q1 of

particle p1 touches the shell for q2 of particle p2 and vice versa.
(b) The reason for 5 ∈ G: Two concurrent tangential shell contacts occur for
ζ1
ζ2

= 3.

P∆,ζ2
, i. e., P for fixed ∆ and ζ2 but variable ζ1. In order to

do this, after selecting the correct subtable, we evaluate not
only the elements of Hk but also the coefficients of all pieces
at ∆ and ζ2. We use this to compute the coefficients of an
objective function for finding an optimal aggregate particle
radius, as explained in Section V.
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V. COMPUTING AGGREGATE PARTICLES

Having precomputed the look-up table of the kernel product
integral not only facilitates computing merge errors, it also
helps in efficiently generating a suitable aggregate particle p̄
for merging a given particle subset. We want to compute the
attributes of p̄, i. e., its position, mass, density, radius, and field
values, such that its contribution to the attribute fields is most
similar to the contributions of its children {pi, i ∈M}.

Since the aggregate particle’s position p̄, mass µ̄ , density
ρ̄ , and radius ζ̄ affect all attribute fields at the same time,
we have to prioritize some objective error metric. To account
for different tasks and priorities, the user can provide weights
ηi ≥ 0, i = 0, . . . ,u+ v, ∑u+v

i=0 ηi > 0 for the attribute fields to
define the objective scalar field

γ (x) = ∑
i∈I

γiWi (x) ,

γi = η0 +
u

∑
j=1

η jαi j +
v

∑
j=1

1
3

η j+u
(
βi j1 +βi j2 +βi j3

)
whose merge error Eγ shall be used for setting “good” values
for
(
p̄, µ̄, ρ̄, ζ̄

)
. Formally, the objective field behaves like any

other scalar field although the virtual values γi are not saved
as proper particle attributes.

We start by setting the position p̄ to the heuristic “educated
guess” value

p̄ =
∑i∈M ϕipi

∑i∈M ϕi
, ϕi =

µiγi

ρi
,

i. e., to the sum of the children’s positions weighted by their
respective absolute contributions to the objective field. While
this choice may compromise our aim to globally optimize
all attributes of the aggregate particle, it will be sufficiently
effective for most kernels which concentrate a particle’s con-
tribution closely to its position.

The remaining attributes will however be computed such
that Eγ is indeed globally minimized, subject to the already
fixed position and to some arbitrary lower bound ζmin > 0
for the radius ζ̄ . We propose to set ζmin =

1
qn

max
i∈M
‖p̄−pi‖ so

that the volume of influence Bqnζ̄ [p̄] of p̄ includes all child
positions pi. In our experiments, this lower bound is “active”,
i. e., ζ̄ = ζmin, only in less than one percent of the cases.

Since the mass µ̄ serves just as a scaling factor to the other
attributes, we can freely fix it without impacting optimality.
In order to conserve the overall mass distribution in the best
possible way, we simply set µ̄ = ∑i∈M µi.

A. Minimizing the Objective Field Error

For fixed p̄ and µ̄ , the objective field error

Eγ
(
ζ̄ , ϕ̄

)
=

√√√√√ˆ
R3

(
ϕ̄
ζ̄ 3

ω̄ (x)−∑
i∈M

ϕi

ζ 3
i

ωi (x)

)2

d3x (7)

only depends on the aggregate particle radius ζ̄
and the factor ϕ̄ = µ̄ γ̄

ρ̄ where γ̄ = η0 + ∑u
j=1 η jᾱ j +

∑v
j=1

1
3 η j+u

(
β̄ j1 + β̄ j2 + β̄ j3

)
.

In this section we describe a method for finding optimal
values for ζ̄ and ϕ̄ , i. e., values which minimize Eγ

(
ζ̄ , ϕ̄

)
subject to the constraint ζ̄ ≥ ζmin. This two-dimensional
problem can be reduced to a one-dimensional one when noting
that for any given radius ζ̄ we can express the optimal ϕ̄ as

ϕ̄
(
ζ̄
)
=

AM(ζ̄)
K where K is the precomputed constant defined

in (6) and

AM
(
ζ̄
)
= ∑

j∈M

ϕ j

ζ 3
j

P
(∥∥p̄−p j

∥∥ , ζ̄ ,ζ j
)
.

This allows us to express Eγ only in terms of ζ̄ as

Eγ
(
ζ̄
)

=

√√√√BM−
[
AM
(
ζ̄
)]2

Kζ̄ 3
,

BM = ∑
i∈M

∑
j∈M

ϕiϕ j

ζ 3
i ζ 3

j
P
(∥∥pi−p j

∥∥ ,ζi,ζ j
)
. (8)

Its derivative vanishes iff

0 =CM
(
ζ̄
)
= 3ζ̄ dAM

(
ζ̄
)
−2ζ̄ d+1A′M

(
ζ̄
)
, (9)

where A′M is the first derivative of AM . CM is a piecewise
polynomial of degree 2D+ 4 with at most |M|

(
2n2 +n

)
+ 1

pieces, some of which may not have to be considered due to
the restriction to the lower bound ζmin. It can be shown that

lim
ζ̄→∞

AM
(
ζ̄
)
= 4πw(0)

[´
R3

r2w(r) dr

]
∑
j∈M

ϕ j

ζ 3
j
< ∞,

hence lim
ζ̄→∞

Eγ
(
ζ̄
)
=
√

BM = sup
ζ̄∈(0,∞)

Eγ
(
ζ̄
)
, which proves that

we can always find an upper bound ζmax for ζ̄ for our search
for optimizers.

We compute the coefficients of AM
(
ζ̄
)

using the look-up
table of the kernel product integral coefficients. For every
j ∈ M we compute from it the subdomain endpoints and
coefficients of the univariate piecewise Laurent polynomial
P∆̄ j ,ζ j

, ∆̄ j = ‖p̄−pi‖ as explained at the end of Section IV.
Each of the coefficients is then multiplied by ϕ j

ζ 3
j
. After sorting

the subdomain endpoints of AM , which are all subdomain
endpoints of the P∆̄ j ,ζ j

, for each subdomain of AM the coeffi-
cients of AM are computed as the sums of the corresponding
coefficients of the ϕ j

ζ 3
j
P∆̄ j ,ζ j

.

From the coefficients of AM we compute the coefficients of
CM according to (9) as well as of all its derivatives. Afterwards,
for every domain interval and every order o = 2d + 4, . . . ,1
we compute the roots of the o’th derivative C(o)

M that lie
inside the interval. For this we use a Newton-Raphson method
guarded by bisection, starting with two points at which C(o)

M
has opposite signs. The roots of the o’th derivative give us
the extremizers of the (o−1)’th derivative, which serve as
starting points for the root finding procedure for order o−1,
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and so on. Having found all optimizer candidates, we compute
1

ζ̄ 3

[
AM
(
ζ̄
)]2

for each of them to find the global optimizer.
The root-finding algorithm can be further optimized, since

for order o > 0 every root of C(o)
M has to be computed only to

the precision needed to decide whether C(o−1)
M evaluates to a

positive or a negative value at its extremizer. The algorithm can
be implemented in a perfectly stable and reliable fashion and
has proven to be reasonably fast. However, any root-finding
algorithm may serve well here.

B. Minimizing and Computing Field Errors

In this section, we present formulas suitable for computing
the remaining aggregate particle attributes. Now that we have
fixed p̄, µ̄ , and ζ̄ , the values ψi =

µi
ρiζ 3

i
P
(
∆̄i, ζ̄ ,ζi

)
are also

fixed. Just like µ̄ , we can choose the density ρ̄ > 0 freely
without restricting optimality in the field errors. We just choose
the value ρ̄ = Kµ̄

∑i∈M ψi
, globally minimizing the “weight error”

EW =
√´

R3 (W̄ (x)−∑i∈M Wi (x))
2 d3x. For every scalar field

α , we can then compute the aggregate particle’s attribute as
ᾱ = ρ̄

Kµ̄ ∑i∈M ψiαi, which globally minimizes this field’s merge
error to

Eα =

√√√√[ ∑
i∈M

∑
j∈M

µiµ jαiα j
ρiρ jζ 3

i ζ 3
j

P(‖pi−p j‖,ζi,ζ j)

]
− 1

Kζ̄ 3

(
∑

i∈M
ψiαi

)2
.

Note that, while this formula for Eα is computationally less
expensive than (2), it requires ᾱ to be optimal.

Each component of every vector field b = (β1,β2,β3) can
be computed just like a scalar field, which minimizes its error
to

Eb =
√

E2
β1
+E2

β2
+E2

β3
.

C. Propagating Merge Errors with respect to Original Fields

The attribute field errors computed so far reflect the error
produced by one merge. However, if an aggregate particle’s
children are also aggregate particles, it would be beneficial
to know its error with respect to its original descendants:
How much has an attribute field changed during all the
merges leading to this aggregate? We cannot compute this
error without knowing the data of all these original particles.
We can, however, provide an upper bound: Due to the L2

norm fulfilling the triangle inequality, we can compute this
upper bound by computing the sum of the children’s field
error bounds and adding it to the error caused by the current
merge. This absolute error bound may be useful for efficiently
selecting particles from a hierarchy.

VI. RESULTS

We have implemented our particle merging method in C++
and tested it, calling it about one million times on subsets of 2
to 20 particles selected from a real-world SPH data set with 4 ·
106 particles. In addition to position, mass, density, and radius,
every particle had 4 scalar attributes and 2 vector attributes.
For each selected particle subset, an optimal aggregate particle
was constructed along with the merge errors for all additional
attribute fields, measuring the time needed. The experiments

were made on a PC with an Intel Core i7-3930K CPU with
3.2 GHz frequency (3.8 GHz boost).

The computational cost of the method depends heavily on
the kernel used. While we can set our program to use any
kernel fulfilling the requirements stated in Section III, for our
experiments we restricted ourselves to the cubic kernel defined
in (1).

While the precomputation of the look-up table containing
the kernel product integral coefficients is done in less than one
second, the computation time for the merging depends mostly
on the number of children |M|. AM

(
ζ̄
)

is a weighted sum of
|M| univariate piecewise Laurent polynomials P∆̄ j ,ζ j

, each of
which has 11 pieces, leading to up to 10 |M|+ 1 pieces for
AM . Therefore, for computing the coefficients of AM , we need
quadratic time with respect to |M|. For the remaining steps of
computing optimal attribute values for an aggregate particle,
linear time complexity applies.

In order to obtain the error values for the attribute
fields, we have to compute all kernel product integrals
P
(∥∥pi−p j

∥∥ ,ζi,ζ j
)
, i, j ∈ M, which is almost the same as

computing the summands of BM , as defined in (8). There
are

(|M|
2

)
kernel product integrals to be computed, resulting

in quadratic time complexity for computing error values. This
corresponds to our time measuring experiments, the results of
which are summarized in Fig. 4. For any number of children,
computing AM and BM and optimizing the radius ζ̄ greatly
dominates the effort of the total merging procedure. These
three steps amount to about 79% of the total time for |M|= 2
and about 91% for |M|= 20.

Our implementation needs about 29.5µs for computing an
aggregate particle and error values for |M| = 2. In terms of
figures, this corresponds to about 2 · 106 particle mergings
in one minute or nearly 3 · 109 in one day, not considering
a possible speedup by merging several particle groups in
parallel on a multi-core CPU. The method therefore seems to
be suitable for building multi-resolution hierarchies for large
SPH data sets. However, in order to handle large data sets,
a complex out-of-core framework for loading and selecting
particles, calling the merging procedure and saving the output
aggregate particles, would have to be used.

VII. CONCLUSION AND OUTLOOK

We have presented a method for computing L2 measures for
the error inflicted on attribute fields by merging an arbitrary
number of particles. Its efficiency is achieved by the use of
a precomputed and efficiently accessible look-up table storing
the coefficients of the kernel product integral as a function of
the distance between two particles and the particles’ radii of
influence.

Based on the same precomputed table, we laid out a method
for computing an optimal aggregate particle for merging a
given particle subset. Except for the aggregate particle posi-
tion, all attributes are computed such that the L2 norm of the
change in the attribute fields is minimal. For prioritization, the
user can provide weights for the attribute fields, according to
which the optimal radius is calculated.
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Fig. 4. Plot of the average time needed for computing an aggregate particle
as a function of the number of children |M|. Time values are given in
microseconds. The blue plot shows the time needed to compute the coefficients
of AM

(
ζ̄
)

and the summands of BM , red shows the time needed for finding the
optimal radius ζ̄ afterwards, and black shows the total time needed, including
the computation of all the remaining attributes and error values.

Our methods facilitate the construction of multi-purpose
particle-based multi-resolution hierarchies useful for visualiz-
ing SPH data in various ways. The computation times stay
within reasonable limits, allowing the construction of such
hierarchies for large data sets.

Beyond our main purpose of constructing hierarchies, our
findings and the merging method may be applicable to any
field in which SPH data is being manipulated, such as for the
reduction of resolution during SPH simulations.

Nonetheless, our method leaves room for further improve-
ment, e. g., by providing a means to also rigorously optimize
the position of the aggregate particle. In addition, one could
try to expand it to be applicable to time-varying SPH data, by
finding ways to reduce the resolution in the time dimension
beyond just skipping some time steps, or by designing a strat-
egy to efficiently update particle-based hierarchies from one
time step to the next. Moreover, since most of the computation
comprises adding and multiplying coefficients of piecewise
defined functions, which seems to be well parallelizable, a
significant speed-up by porting the algorithm to be run on the
GPU is to be expected. However, advances are most probable
in the application of our method to novel strategies for multi-
resolution hierarchy construction for visualization.
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