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ABSTRACT

Clinical data have their own peculiarities, as they evolve over time,
may be incomplete, and are highly heterogeneous. These charac-
teristics turn a thorough analysis into a challenging task, especially
since domain experts are aware of the data flaws, which may impact
their trust in the data. As we obtained anonymized clinical data from
more than 3,500 patients with retinal diseases, we have to address
these challenges. We define a workflow that integrates data cleansing
and exploration in an iterative process, so that users are able to easily
find anomalies and patterns in the data at any point in their analysis.
We implement our workflow in a user-centered visual analytics tool
with dedicated visualization and interaction techniques. In collabora-
tion with experts, we apply our tool to examine the interdependency
between patients’ visual acuity developments and treatment patterns.
We find, that real-life data often have unforeseen incidents which can
strongly influence the overall visual acuity development. This differs
to study results, which are usually conducted under restrictive condi-
tions and have shown visual acuity improvement with on-schedule
treatment.

Index Terms: Human-centered computing—Visualization—
Visualization application domains—Visual analytics

1 INTRODUCTION

Since clinics are mapping processes and file handling within data
management systems for many years, large amounts of data have
been collected. These data could reveal valuable information on
patient diagnostics and progression [27] making clinical research
possibly more efficient [25]. On the other hand, this poses the
challenging task of adequately preparing the large amounts of data
to help clinicians in finding answers to their specific questions [33].
Even more, there are many subtasks that might be needed or have
to be combined for different aims. These range from the simple
selection of data over identifying missing values to the judgment
of the semantic within presented data, helping to answer real-world
clinical questions [37]. To support these subtasks visual analysis
tools can be designed to combine different lower-level approaches.
Since medical technology and clinical questions differ between
clinical fields, specific solution design is needed, created in close
collaboration with practitioners. This also applies to our use case, as
we analyze large amounts of heterogeneous and abstract patient data
from the ophthalmic domain.
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In this paper we depict the design and implementation of our
visual analysis tool, which helps retinal physicians to answer their
questions. To this end, we have developed a dedicated workflow
consisting of the three fundamental steps (i) data preprocessing,
(ii) data cleansing, and (iii) data exploration. This workflow is
then implemented into a tailored visual analysis tool. We use suit-
able visualization, interaction, and annotation techniques for retinal
physicians to both amend the data and support to locate patterns to
possibly generate findings. Subsequently, we gather feedback for
the tool, by letting expert users analyze the dependency between
treatment and visual acuity development.

2 BACKGROUND

Our goal is to create a visual analysis tool to be applied to the field
of clinical data in ophthalmology. For the development process we
follow Tamara Munzners nested model [30]. We reflected this by
firstly understanding the use case and secondly analyzing existing
literature to find applicable techniques or a gap in existing solutions.

2.1 Use case

The first step in Munzners model is an in-depth understanding of
the domain, the data, and the users with their questions.

Medical Background
Visual acuity represents the ability to see one’s environment

sharply and in detail. It highly depends on the condition of the
macula, which is the central part of the retina within the human eye.
One of the most common macula impairments is the age-related mac-
ular degeneration (AMD), which is an important cause of blindness
in industrialized countries [29].

To find treatment for that ailment intense research effort has
been invested, resulting in successful therapy methods like the
injection of anti-VEGF agents directly into the affected eye. By
that, many patients are able to sustain or even improve their visual
ability [10]. Short term affect as well as long term impact have
been proven beneficial [1, 31]. Yet, up to today different facets of
the dependencies between injection frequency, medication and the
visual acuity development are not fully understood, especially with
respect to real-world patient data. Even though more injections
over longer time periods can have positive impact [1], each
injection bears the risk of infection (surveyed by Falavarjani and
Nguyen [13]). Weighing the chances between potential positive
impact and infection risk imposes a heavy responsibility on retinal
physicians. Providing meaningful information by means of data
analysis of existing patients’ developments could effectively support
such decision making. This is particularly important, as there are
often many extraordinary incidents in a patient’s medical history,
like cataract operation or pigment epithelial detachment, which may
distort the overall visual acuity development.

Data Characterization
Our domain experts work in a clinical environment where most

data are gathered and stored electronically. To handle the clinical
data, which are management data, device data, examination data,



and treatment data, a hybrid system consisting of different com-
mercial tools and a bundling in-house web application exists. The
management data are recorded by clinic assistant personnel via an
in-house developed hospital information system. They mainly have
some general information, like age and sex. The eye-related device
data are recorded by the respective device software, including im-
age data, meta data, and abstract data like visual acuity values and
tension values. The examination data are recorded via proprietary
form sheets, created in accordance with analog form sheets that were
previously used. During an examination, an assistant or a retinal
physician fills in the information collected. All data are summarized
in a semi-structured medical-report letter, which is manually filled in
by the retinal physician and completed with treatment data as well
as free text comments from the retinal physician. Treatment data
are additionally generated by the surgery management system that is
used to plan and document operations, such as anti-VEGF injections
or cataract operations. The data are organized by creating one record
for each appointment per patient. For our analysis, ophthalmologists
selected relevant patients in their clinical system and extracted the
anonymized records. As a prerequisite, each selected patient needed
to have received at least one injection of anti-VEGF medication, as-
suring that treatment in some form had been applied. Altogether, we
obtained data from records of more than 3,500 patients between the
years 2004 to 2018 spread over 95,000 files stemming from different
applications and devices in the clinic. The patients have between
one and 131 appointments, distributed over a time span between one
day and 13 years. The content of the medical report letters for each
appointment has been partly extracted into structured data files by a
text mining approach. While the results of the text mining are part
of the available data, they are only partially considered, as this work
does not cover issues related to text mining.

To increase the level of certainty, there are deliberately included
redundancies in the data, as some data points are redundantly
recorded by different devices or personnel. On the other hand, there
are also incomplete data points, as some of the clinical devices may
not have been available over the full period of time. Generally, the
data were initially gathered for clinical use. So, to use it for research,
we have to cope with large amount of abstract, heterogeneous,
incomplete, and redundant data. This implies a high demand for
data preparation and data cleansing. As data issues may be various
and only discovered during the analysis by the experts, data changes
may be necessary even during exploration.

Task Abstraction
Identifying the tasks requires a thorough understanding of the

users. To achieve this, we cooperated with retinal experts by using
observation on the job, interview, and thinking-aloud techniques.
The first goal was to understand the working day of a physician,
so we performed an observation on the job over three days in an
eye care center, where the visualization experts observed the every
day working process of the retinal physicians. This was particularly
useful in combination with the thinking aloud technique, as the
experts could explain the necessity of a domain related task and their
motivation. Yet, especially with patients present, this was not always
possible. For that reason we conducted interviews after each domain
related task, to clarify questions raised and reflect the task and all
involved data acquiring systems like slit lamp examination form,
etc.. In the aftermath of the observation, the visual analysis experts
designed a first draft of the visual analysis tasks. It took six months
and several additional interviews to determine a final version of
these tasks. There are several reasons for that: (i) the visual analysis
experts recorded the domain related tasks in high detail, including
some unrelated and misleading information, (ii) the providable data
changed several times, (iii) both the domain experts and the visual
analysis experts had to define a common ground of understanding.
Especially the last one was challenging, as the domain experts favor

straight forward approaches with sparse color and form usage, which
has a major influence on our approach.

Combining the techniques above, we learned that physicians
are well aware of the available data for an individual patient in
the clinical system. They normally use the system to search for
and show information on individual patients via a web browser.
Here, the user can search the overall database via SQL web queries
and display the result in table form. With that information, they
commonly transfer their existing knowledge, e.g., pathological
information from previously seen patients, to the current case. In
combination with their pattern recognition ability and internalized
expertise on retinal disease characteristics, they find similarities
between the patients. Based on that, they decide on the further
course of action. This conventional way of working typically allows
to take the last few injections of a patient into account. Yet, they
struggle to adequately assess the response to therapy over longer
periods of time. Individual factors such as duration of therapy
response, which would be apparent from previous treatments,
cannot be taken into account for the current therapy decision. This
withholds the experts from identifying general relations between
the visual acuity development and given injections. Furthermore,
the available data are not fully structured and not necessarily
complete. Identifying data that are missing within result lists
is, however, challenging. Hence, the physicians usually start by
analyzing the medical report letters one at a time to see if certain
information is missing. While that information for a specific visit
of an individual patient is interpretable, a structured export or
automated identification and correction of all unstructured data
points is not possible. Based on these domain analysis results, we
identified three basic tasks that need to be supported:

(i) Efficiently find missing values: Due to the large amount of
incomplete data, an efficient way to find and amend missing values
is necessary.
(ii) Relate visual acuity values to the applied treatment over
time: To analyze the relationship between the visual ability of pa-
tients and their treatment patterns, both must be visualized together.
(iii) Find major incidents in visual acuity development: Finding
these incidents is important for the overall development predic-
tion, as they are independent from the original disease and treatment.

Supplementary to the task identification we experienced that ob-
servation on the job is particularly useful. It supported the detection
of low level requirements, like interaction habits, performance, and
tool usage experience of ophthalmologists in clinics. For high level
task definition and domain understanding, iterative communication
is indispensable.

2.2 Related Work

In Munzners nested model, the next step is the integration of a
suitable visual encoding and interaction idiom. In this section,
we list current solutions that have inspired us for our for the task
fulfillment, and outline limitations we had to overcome.

Identify missing values
For dealing with undetected missing values, and value inconsis-

tencies, several approaches with different features and limitations
exist. While many are algorithm-focused data cleansing approaches
(e.g. [11, 17]), we focused on an iterative human-in-the-loop
workflow. This is also recommended by Krishnan et al. [22] as
a result of a user survey on the topic of data cleansing with 29
experts from academia and industry. For data preprocessing, we
were inspired by the visual analytics tool for epidemiological
cohort study data by Alemzadeh et al. [4]. Yet, it does not have the
ability to identify completely missing values. For data cleansing
Kandel et al. [21] present the tool ”profiler”, which allows users to



explore data and gather information on missing values or anomalies.
While this approach works for large data, we have missing values
with dependencies to existing data points (e.g. due to an existing
injection incident it is possible to identify a missing visual acuity
measurement). Gschwandtner et al. [15] present the TimeCleanser
tool. Based on a previously published taxonomy of errors in time-
oriented data [16], the authors integrate an interface for improving
correction algorithms with different use-case specific visualizations.
For large time-series data the tool ”VisPlause” from Arbesser et
al. [5] assesses data quality with the focus on issue identification.
They conduct a design study with domain experts in the energy
sector, with the goal to visualize and analyze known data issues. As
we need to combine the identification and amendment of known and
unknown missing values, all of these approaches are inspiring, but
not directly transferable to our use case in the field of ophthalmology.

Visualizing Incidents and Sequences in Time-oriented Data
The visualization of time-oriented data has a long history [2]

and many approaches for different purposes exist. Visualizing
time-oriented clinical data together with indications of medical
relevant events has already been introduced by Cousins and
Kahn [12]. Based on that, very suitable approaches for incident
and sequence visualization in time oriented data are ”LifeLines”
from Plaisant et al. [32] and ”LifeLines2” from Wang et al. [39].
While the former introduces a visualization for sequences and
incidents in patient data, the latter extends that approach to visualize
several timelines at once. Taking that as a base, we examined
other literature to identify further techniques adequate to the tasks.
The temporal sequence of different motion capture variables is
visualized by Müller et al. [28] with the help of different color
codings. To provide a global overview of motion capture sequences,
Bernard et al. [8, 9] visualize measured time-dependent data
together with events and event sequences. The limitation here is,
that their sequences are categorical data, while we have numerical
data. A similar tool for visually analyzing event data streams is
presented by Fischer et al. [14], specifically designed for the field
of system administration and monitoring. A closer look into the
use of visual analytics in the biomedical domain is provided by a
survey by Turkay et al. [38]. Shahar et al. [36] focus especially
on browsing through patient data via temporal abstraction and
semantic navigation. Bade et al. [6] present a stacking-based
overview visualization of health data together with a detail view
for clinical treatment support. In a recent work, Zhang et al. [42]
superimpose measured data for different patients with symbols for
indicating relevant events. In contrast to their data, we are dealing
with high variability in the measured time sequences and event gaps.

Annotating Missing Values and Data Relations
To fulfill the tasks from Sec. 2, (i) missing values and other data

issues must be marked and corrected before exploration and (ii)
the outcome of the exploration must be externalized. A common
approach in this regard is the use of annotations, which Lipford
et al. [23] and Mahyar et al. [24] point out to be a critical step
in visual analytics. While Heer and Shneiderman [19] provide
general techniques for annotations to mark peculiarities within a
visualization, Schmidt et al. [35] present a general characterization of
annotations. They capture different types and reason for annotations
as well as ways to gather and communicate them. For each of these
aspects, various examples in literature exist. Hellerstein et al. [20]
develop a system for domain experts to amend, change, and prepare
their data by adding information, mainly based on text and table
entries. Annotations within a visualization are shown by Willett et
al. [41], who support the integration of textual comments. They can
be amended with screenshots and categorized via tags, yet without
supporting data changes. Al-Naser et al. [3] enrich the data by
integrating user information, which is used to customize the data

visualization in a multi-user environment for spatial data. [26]

2.3 Summary
In conclusion, existing visual analysis techniques can facilitate task
fulfillment in the highly specific field of ophthalmology. Yet, we
didn’t find any description, that combines the various techniques
for a comprehensive analysis of clinical ophthalmic data for our
tasks. Our goal is therefore to define a workflow that channels and
structures the tasks of the experts and allows us to combine and
advance existing visualization techniques in an appropriate way.

3 WORKFLOW DEVELOPMENT

With the goal to amend and explore the data we design a workflow.
It must assure that erroneous data is identified and, where possible,
corrected without having a complete list of possible errors or incom-
pleteness. We therefore designed the steps data cleansing and data
exploration in addition to the basic step data preprocessing. During
implementation we realized that it is hardly possible to detect and
correct all errors at once. So, to allow data cleansing at a later stage,
we designed the cleansing and exploration steps as iterative and
alternately feasible, as shown in Fig. 1.

3.1 Overview
The workflow is divided into three fundamental steps: (i) data prepro-
cessing, (ii) data cleansing loop, and (iii) data exploration loop. The
data preprocessing ensures that the raw data are correctly imported,
structured, merged, and presented to the user in an appropriate way.
The user then removes structural. The data cleansing loop supports
the identification, removal, or amendment of erroneous or missing
data on the semantic level. Within the data exploration loop the
experts can examine interconnections between data dimensions and
identify, select, annotate, and/or export their findings. While the
workflow foresees an initial run of the data cleansing loop, it deliber-
ately allows a switching between the cleansing and exploration loop
at a later stage. This gives the possibility to iteratively amend the
data at any point of the analysis.

3.2 Data Preprocessing
The purpose of the data preprocessing is the correct structuring of
the raw data, supported by basic filtering functions. It starts with the
import of the data either from a specific patient subset or a random
sample. For these patients the differently structured JSON files from
various sources are converted into a multidimensional data structure
with numerical, categorical, and textual dimensions. At this point,
the data is automatically evaluated based on rules and, if necessary,
converted or sorted out. These rules range from simple thresholding
to refining some dimensions, e.g., specifying the ”International
Statistical Classification of Diseases and Related Health Problems”
(ICD10) information in the raw data with a mapping table created by
experts. After these rules have been applied the data is presented to
the user, who can then find and remove data elements with structural
issues, like empty patients or empty data dimensions.

3.3 Data Cleansing Loop
After the data have been imported and structured with basic data
filtering applied, the workflow foresees an initial data cleansing loop
as shown in Fig. 1. It allows for identification and correction of
common or specifically targeted data issues, and thus supports the
first task from Sec. 2. The data cleansing loop has the four steps
(1) visualize, (2) adjust view, (3) browse & select, and (4) change
data. Step (1) is performed by the computer, which generates an
overview visualization of the structured data. To perform the data
cleansing task as well as possible, this step already includes preset
visualization parameters. Yet, the user still has the possibility to
adapt them in step (2) in case of personal preferences. A personalized
and task related visualization is an important prerequisite for step



Figure 1: General workflow, developed on the basis of the task abstraction in Sec. 2. It consists of three fundamental steps data preprocessing
(upper left), data cleansing loop (lower left) and data exploration loop (lower right). The cleansing and exploration loops are divided into four steps
each, which are further detailed in Sec. 3.

(3) the browsing and selecting step. Here the experts’ core task
is the judgment of the data semantic content. They have to find
data-points that need to be added, changed, or removed within the
data cleansing loop. The reasons for the data amendment can be
discrepancies, swapped, or wrongly assigned data-points, but also
missing values, which can only be identified with the tacit knowledge
of the experts. If necessary, the user can mark, delete, amend, or
add a data-point, representing the final step (4) in the data cleansing
loop. Having finished one run of the loop, the user may want to
focus on another data discrepancy issue, and thus initiate a new run
of the data cleansing loop. Alternatively the user can move on to the
exploration loop.

3.4 Data Exploration Loop

The data exploration loop, as shown in Fig. 1, supports task two
and three from Sec. 2. It has the goal to relate the visual acuity
development to treatment incidents and to support the location of
major incidents. This can be done either for a single patient or
different patients. The data exploration loop has the four steps
(1) visualize, (2) adjust view, (3) annotate findings, and (4) export.
The first step provides an overview visualization of the chosen data
dimensions for the imported dataset (1). In the second step the
visualization can be adapted by the user, so that it is suitable for
the data exploration. That means, the visualization parameters have
to be set in a way to see interdependencies between different data
points. In addition, the user must be able to judge the semantic of
the data-points as well as their connection to others.

The exploration loop supports free exploration. In doing so, an
interplay between visualization and interaction is created, support-
ing the relation of the visual acuity values to treatment incidents
over time. Additionally, it allows the identification of extraordinary
incidents for a patient. In step (3) the user selects, marks, and/or com-
ments the finding via annotations directly within the visualization.
These findings can be externalized in step (4) by a dedicated data
export of the dataset with the annotations, preserving the reference
to the original data-point(s).

During the data exploration loop users usually identify previously
overlooked data issues, for example accidentally swapped visual
acuity values for the left and right eye of a patient. If this would
remain uncorrected the visual acuity development may be corrupted.
So, we support the correction of data entries at any time by always

allowing to switch between the loops.

4 THE DESIGN OF THE TOOL

With the given user tasks (cf. Sect. 2) and established workflow
(cf. Sect. 3) we design a tailored visual analysis tool. It supports
structuring of heterogeneous data, reading and writing of data, as
well as suited visualization techniques that apply to the needs of
the data and the domain experts. This includes data operations
for improvement as well as the flexibility of switching between
cleansing and exploration without disrupting the current mental map
of the user. Regarding data preprocessing, we can build upon our
previous work about unifying and structuring data in the ophthalmic
domain [34]. Regarding data annotations we can build upon our
conceptual annotation framework published in [35].

The architecture of our tool consists of the data layer, analytics
layer, and user interface layer. The data layer reflects the necessity
to parse, change, and store the data and annotations. It represents the
interface between the internal data storage, the other layers and exter-
nal data sources and thus controls all data exchange. The analytics
layer provides different aggregations of the data, sorting/grouping
functions and parameter settings for the user interface. In order to
support modularity for later extension, it is designed as a separate
component with interfaces to the other two layers. With the given
data and parameters the user interface layer can present the data to
the user in the visualization component. Additionally the interac-
tion component ensures that necessary user actions like parameter
changing, data amendment, or annotation creation can be supported.

4.1 Data Layer
The data layer facilitates the data preprocessing, and both the data
cleansing and exploration loops in the workflow. It is responsible
for internal data storage and amendment. With regard to the data
preprocessing this means, that the imported data is converted and
stored internally in two linked structures. The first structure re-
flects the appointment-wise way from the clinic to support the data
cleansing loop. Each appointment is a heterogeneous n-dimensional
vector. The value of n is calculated by counting the number of
values recorded on that appointment plus the number of additional
dimensions. The additional dimension contain information on the
data source, the import date and possible redundancy. The latter is
important, e.g., for emphasis during the cleansing loop. With regard



to the exploration loop, we create a second data structure. In order
to set all values for one patient in context to ease the exploration,
the second structure is patient oriented. It holds the generated ag-
gregations from the analytics layer, such as average visual acuity,
number of injections, regression information, and so on. In addition
to the aggregated information, the patient structure holds lists of
incident information for that patient. These include visual acuity
measurement lists, that allow to quickly provide time-series data
e.g., for regression calculation and visualization.

When the initial parsing is finished and the data is internally
stored, all further data amendment is only done on user request.
Hereby, the amendment is always done for both internal structures
and stored in additional dimensions. As soon as a data amendment
request is carried out, the updated data is sent to all affected user
interfaces.

4.2 Analytics Layer

The analytics layer is designed in two parts. The first part is the
parameter definition component and supports both the data cleans-
ing and exploration loops. It controls the visualization-parameter
settings through presetting functions, restriction definition, and auto-
matic parameter changing, implementing a rule based specification.
So, for instance, if the data dimension changes from linear to loga-
rithmic, the color coding parameter is automatically changed from
linear to logarithmic, to ensure correct value encoding. On top of that
it provides predefined parameter settings with specific adjustments
either for the data cleansing loop or the exploration loop.

The other part is the data analytics component, designed to sup-
port tasks two and three from Sec. 2, which are fulfilled in the
exploration loop. Both tasks can be performed on the local level
(intra-patient) or global level (inter-patient) and need to be seen in
the context of the domain experts’ measurement units. We thus need
specific scaling and aggregation functions to reflect the need in the
visualization.

appropriate scaling of data dimensions: To determine scales
for both intra-patient and inter-patient exploration it is necessary
to derive value boundaries for several dimensions. These can be
maximal and minimal values and/or the total number of occurrences
(e.g., number of treatments). Furthermore, to reflect the common
units of the domain experts, conversion from logarithmic scale units
to linear scale units is performed. While domain experts internally
communicate using the decimal visual acuity value (Vdec), its values
do not represent linear changes. Therefore the logMar visual acuity
value (VlogMar) has been developed [7] to ease calculations. Addi-
tionally, we need the letter score (Vletter) which is used to measure
visual acuity differences (see Wecker et al. [40]), so that a mutual
conversion is necessary.

aggregation of patient data: For intra-patient numerical data-
points, like visual-acuity values, arithmetic means and medians are
calculated. They provide a single data point for each patient and
each dimension for comparison. To see the distribution of a data
dimension for all incidents for inter-patient comparison, the occur-
rences of the values are counted. This gives the absolute frequency,
and is set in relation to the total number of values for that dimen-
sion to obtain the relative frequency. As the overall visual acuity
development over time is one of the major judgment parameters for
the domain experts, we have to calculate the difference between the
visual acuity value at the beginning and at the end of each patient’s
monitoring period. Using the first and last visual acuity values is
not sufficient, as there is fluctuation depending on the patient’s daily
form. Instead, we use the linear regression function, as it fits the
patients values to linear curve, better representing starting and end
points.

With the linear regression function it is possible to derive the
visual acuity difference between the starting point and end point for
each patient. Because this function produces a decimal value that

has not been physically measured, a direct encoding could lead to
over interpretation by the experts. Additionally, a precise value is not
necessary to get an impression on the overall performances. After
discussion with the experts, we reduce the outcome in two ways.
On the one hand, we use the slope results to visually indicate the
development for a patient, which will be detailed in Sub-Sec. 4.3.1.
On the other hand, we use the classes, ’gain’, ’unchanged’ and
’loss’, from the ophthalmic domain (see [40]) with the following
boundaries:

f (x) =

 loss : ∆Vletter < −15
unchanged : −15 ≤ ∆Vletter ≤ 15
gain : 15 < ∆Vletter

These classes allow users to mentally assign patients into a performer
group and aim at preserving the expressiveness of the regression
result by reducing the precision.

4.3 User Interface Layer
The user interface layer presents specific visualizations and pro-
vides interaction functions that are unique for the different steps
in the workflow. We follow the common approach to separate be-
tween visualization and interaction, which each represent an own
component.

4.3.1 Visualization Component
Having the discussions with the domain experts in mind, we de-
signed a carefully aligned combination of proven techniques and
new elements. This allows our tool to use appropriate visualization
techniques in accordance with the workflow described in Sec. 3. By
that we are able to reach a high level of acceptance among users.
To step by step increase visualization complexity, we design three
screens. The first two are the data import/export and preprocessing
screens and the third is the data cleansing and exploration screen.
Both the data import/export and data preprocessing screens (Fig. 2)

Figure 2: Data import/export screen with log information (a). Data pre-
processing screen (b) through (d). (b) the distribution view, showing
the distributions for all data dimensions of the appointment, including
the absolute frequency and relative frequency. (c) the appointment
view, showing all dimensions for one appointment. (d) the patient view,
showing the patient oriented structure to show all information for one
patient.

have been designed in line with existing screens in the clinic and



proven techniques. This allows users to familiarize themselves with
the tool. To increase the trust in the data, it is shown in text form, so
that expert have a direct reference to the original data. To make sure,
that there’s a cut between the external data-source retrieval and fur-
ther internal processing, we visually separated the data import/export
from the data preprocessing.

The main purpose in the data preprocessing is the exclusion of
implausible data values for all patients (Fig. 2b), empty patients
(Fig. 2d), and/or empty data dimensions (Fig. 2c).

Figure 3: The patient-data visualization-screen. The control panel
(a) holds the legend and the parameter setting. The main visualiza-
tion view (b) shows the time-oriented data with data segments and
incidents. The summary panel (c) shows aggregated values for pa-
tients and their distributions for all patients. The detail view (d) shows
detailed information on a specific data point on demand.

The data cleansing and exploration screen as shown in Fig. 3 has
the goal to communicate time-oriented data of different types from
multiple sources, with redundancies and potential discrepancies.
On top of that, the data derived from the analytics layer has to be
integrated. In respect to that, we decided to show the content in four
separate views.

The Main View (3b) has the purpose to allow data cleansing

Figure 4: Detailed view of the patient data visualization. At the begin-
ning of each horizontal bar the regression slope information is shown
(a). The bar itself consists of color coded segments each representing
a visual acuity measurement value (c), the measurement incidents
at a certain date (e), the color coded treatment incidents, showing
an injection and the medication used. Extraordinary incidents are
visualized as color coded flashes (b).

and exploration by visualizing the defined patient data dimensions

as detailed in Fig. 4. As the visualized data dimensions are seg-
ments and incidents in time for different patients, we divided the
visualization space into horizontal rows, which evolve in time from
left to right. Each row represents the data for one eye of a patient
and displays several data dimensions. The segment visualization
aims to show the development over time. We therefore color code
each segment and place it in accordance with its time-slot (4c). The
color communicates either visual acuity values or visual acuity de-
viation using appropriate color schemes as published in Harrower
and Brewer [18]. As the measured visual acuity values may have
some fluctuation, it can be difficult to detect the overall development
over the full time period. So, we use the regression data from the
analytics layer described in Sec. 4.2 to visualize an additional glyph
at the beginning of each row (4a). This arrow shows the visual acuity
development by three domain specific classifications: gain (green),
unchanged (grey), or loss (red). For a more precise indication, the
regression slope for each patient is encoded in the angle of the arrow.

To mentally connect the segments to the incidents, we encoded
them locally connected. As incidents (4b), (4d), & (4e) refer to
a specific point in time, they are represented as small regular (4d)
& (4e) or irregular (4b) glyphs. Since they have varying medical
consequences, it is important to differentiate between them. The
regular incident glyphs represent regular incidents, like planned mea-
surements or treatments, smoothly connected to the corresponding
horizontal bar. Glyphs that represent extraordinary incidents, on
the other hand, have an irregular shape, to show the disruption they
represent.

The Control Panel (3a) supports steering and understanding of
the main view. It is designed to provide an explanatory legend for
colors used in the main view. Additionally it holds visualization-
parameter controls, depending on the parameter type, to display and
control the current parameter state.

The Summary View (3c) has the goal to provide an overview
of the data distribution for all loaded patients. It shows aggregated
data for four data dimensions (first, last, mean, and median visual
acuity values) for all patients at once and emphasizes the values of a
selected patient to evaluate its position in the total. In contrast to the
main view, which shows time segments, here the data per time point
is displayed. The color intensity encodes the frequency of associated
data points.

Finally, the Detail View (3d) provides detailed information of
just one data point for a patient. Whereas the summary allows for
a general overview over all patients, the detail view supports the
judgment of a single data point for cleansing or exploration.

4.3.2 Interaction Component

Our interaction concept is mainly driven by two factors: (i) intuitive
support of well known techniques and (ii) concurrent interaction
purposes, like data cleansing, browsing and annotating. To support
intuitive interaction in the data import/export screen and the data
preprocessing screen (Fig. 2), we use the mouse for scrolling, row-
selection, sorting, column rearrangement as well as filtering, which
is in line with well known techniques from the existing clinical
system.

For the views on the visualization screen (Fig. 3), interaction
methods get more complex, as they have to support (i) the visual-
ization parameter adaptation, (ii) the visualization navigation, (iii)
the data cleansing, and the (iv) data annotation. The visualization
parameter adaptation can be performed via the dedicated parameter
control panel described above. The user can change specific parame-
ters with their controls or choose preset parameter settings using a
combobox. By that, the visualization is changed on the fly. Scrolling
and zooming allows to navigate through the visualization, to find
data points for cleansing or interest of exploration. Selecting such
points through mouse-hovering provides additional information on
demand. The cleansing support, which has to take care of marking



and/or removing of existing data-points and the creation of new ones,
is shown in Fig. 5.

Figure 5: Interaction support for cleansing. Segments or incidents
can be cleansed with a mouse-click (a). New incidents can be created
in the visualization (b) supported by an interactive dialogue (c).

The user can either use the primary mouse button to visually
mark a specific data-point as ”cleansed” with transparency (a) or
allow the creation of new data points with local reference in the
visualization (b) with the secondary mouse button, supported by
an interactive dialogue (c). The interaction support for annotations
during the exploration loop is similar to the data cleansing type, yet
the annotation window shows a comment section instead of data-
point amendment fields. Additionally the respective data point is
emphasized as annotated. All generated comments for that data
point are displayed in the detail view.

5 EXPERT FEEDBACK

With the tool at hand, we organized two sessions to gather feedback
from the experts. The first session was designed as an application
session with an expert, usually working in the conventional retrieval
and analysis of patient data (cf. Sect. 2.1). The second session was
held as a tool demonstration with a mixed group of experts, including
ophthalmic practitioners and research scientists.

With the application session, our general goal was to test the
practical utility of the tool. Particularly, we aimed to assess: (i)
the appropriateness of the visual design and (ii) the usability of the
interaction functionality to solve the identified tasks (cf. Sect. 2).
To answer these points, a senior retinal physician applied the tool
supported by a visual analytics expert. The data for the session
consisted of an arbitrarily chosen sample of 205 patients with a total
of 9790 regular and irregular incidents. All workflow steps were
performed within a time-frame of 60 minutes.

Figure 6: Data cleansing task. The user has adjusted the visualization
parameters, so that missing visual acuity measurement incidents can
be detected. (a) The arrows point at the left and right eye of the
same patient. As the clinic personnel always measures both eyes, it
is unusual, that on eye misses a measurement.

Starting with the data preprocessing, the expert’s first objective
was to identify any flaws in the data. The import log and preprocess-
ing screens helped to reveal several major issues, including missing
or irrelevant values (for preprocessing screen see Fig. 2b-d). The ex-
pert applied automated filtering rules and used available interaction
functions to exclude the corrupted data entries. As a result, a struc-
tured dataset with 204 medically relevant patients and 9104 incidents
was obtained. Continuing with the data cleansing, the expert aimed
at improving the data quality. By looking at the patient-data screen,
the expert quickly noticed few instances of missing visual acuity

measurements. The visualization parameters were switched accord-
ingly to put further emphasis on these issues (Fig. 6). Browsing
through the data helped the expert to classify them as a reoccurring
problem, with 73 missing values found in total. Using the annotation
function (Fig. 5), all missing values could be directly amended. In
this regard, the expert pointed out the interactive manipulation of
the visualized data to be particular intuitive and useful. Finally, the
expert explored the cleansed data to study the visual acuity devel-
opment in relation to injections received. An appropriate parameter
preset for the patient-data screen was loaded and refined. While
browsing through the data, the expert located several extraordinary
incidents, such as a patient with a sudden loss of visual ability. The
linked summary and detail views allowed to investigate the incidents,
check their plausibility, and record gained insights. The expert reas-
sured us that the provided functionality was indeed helpful to draw
the conclusion that such incidents are unexpectedly common and
strongly influence the visual acuity development. In the end, all
tasks of the application session were completed successfully. In
retrospect, the expert particularly appreciated the ability to jump
back and forth between the exploration and cleansing loops to imme-
diately process every discovered erroneous data point. The expert
concluded that reducing the manual data processing effort compared
to current procedures while eventually being able to obtain analysis
results with higher accuracy are great benefits.

With the demonstration session, our general goal was to assess
the medical relevance of the design concept. A group of three oph-
thalmic experts, including a head physician, from an eye care center
specialized in the diagnosis and treatment of retinal diseases partici-
pated. A live demonstration of the tool and its main components was
given by a visual analytics expert based on the described data and
workflow. Informal feedback was gathered during the demonstration
and in subsequent discussions. The experts particularly appreciated
the workflow for enabling a more structured way of working with
the clinical data. Regarding the design, one expert stated: ”After
looking at the visualization for a while, I begin to recognize pat-
terns, similar to looking at patient images”. In the discussions, this
statement was attributed to the new visualization design choices
(row-wise arrangement of patient data and applied color presets) as
well as to the consideration of familiar presentations known from
the conventional data analysis. Overall, the feedback of the second
session was very positive. The experts rated the design concept to
be effective and the medical outcome to be highly relevant. Based
on the demonstration, the experts even decided to present the tool
and the generated results at the largest ophthalmology congress in
Germany, the DOG Congress in Bonn 2018.

6 CONCLUSION AND FUTURE WORK

We have shown that the integration of a suitable workflow with vi-
sual analytics methods can be beneficial for the task fulfillment in the
domain of ophthalmology in clinical environments. One example is
the acknowledgement of the commonness of extraordinary incidents
that are not related to the original treatment, yet still influence the
visual acuity development. Facilitating the externalization of data
amendments and findings, we allow for permanent data improvement
and potential knowledge generation. Applying our tool together with
the experts triggered discussions and sparked new ideas for further
improvements. For instance, the experts suggested to add custom
sorting capabilities and task-dependent groupings of patients. Fur-
thermore, it would be interesting to automate the parameterization
of our visualization design. This way, we could suggest suitable
parameters for given tasks and support users in finding specific pat-
terns in the data. Accordingly, our tool design will be used as a basis
for further extension, fine-tuning, and evaluation together with them.
Finally, analyzing the captured annotations from previous analyses
could help in finding patients with similar issues and allow to reduce
the overall time needed for completing the workflow.
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[34] M. Röhlig, C. Schmidt, R. K. Prakasam, H. Schumann, and O. Stachs.
Visual analysis of retinal changes with optical coherence tomography.
The Visual Computer, 34(9), 2018. doi: 10.1007/s00371-018-1486-x

[35] C. Schmidt, P. Rosenthal, and H. Schumann. Annotations as a sup-
port for knowledge generation - supporting visual analytics in the
field of ophthalmology. In Proc. of IVAPP, 2018. doi: 10.5220/
0006615902640272

[36] Y. Shahar, D. Goren-Bar, D. Boaz, and G. Tahan. Distributed, intelli-
gent, interactive visualization and exploration of time-oriented clinical
data and their abstractions. Artif Intell Med, 38(2), 2006. doi: 10.1016/j
.artmed.2005.03.001

[37] J. G. Stadler, K. Donlon, J. D. Siewert, T. Franken, and N. E. Lewis.
Improving the efficiency and ease of healthcare analysis through use of
data visualization dashboards. Big Data, 4(2), 2016. doi: 10.1089/big.
2015.0059

[38] C. Turkay, F. Jeanquartier, A. Holzinger, and H. Hauser. On
Computationally-Enhanced Visual Analysis of Heterogeneous Data
and Its Application in Biomedical Informatics. Springer, 2014. doi: 10.
1007/978-3-662-43968-5 7

[39] T. D. Wang, C. Plaisant, B. Shneiderman, N. Spring, D. Roseman,
G. Marchand, V. Mukherjee, and M. Smith. Temporal summaries: Sup-
porting temporal categorical searching, aggregation and comparison.
IEEE TVCG, 15(6), 2009. doi: 10.1109/TVCG.2009.187

[40] T. Wecker, C. Ehlken, A. Bühler, C. Lange, H. Agostini, D. Böhringer,
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